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Given a polynomial p ∈ R[X], one can look at the orbit of the polynomial restricted
to the interval [0, 1] The orbit is the set

{p(n) mod 1 | n ∈ N}

If p(x) is the polynomial ax, where a is an irrational number, then it’s not very difficult
to show that the orbit is dense in [0, 1]. Conversely, if a is rational, then the orbit is
not dense. We can actually expect something stronger than density, namely equidistri-
bution. Informally, a sequence is equidistributed if the fraction of times it appears in
any subinterval is proportional to the measure of the subinterval. We’ll show that if p
is a polynomial of degree 1 or 2 with an irrational leading coefficient, then the orbit is
equidistributed.

1 Equidistributed sequences

We’ll begin by formally defining what equidistributed sequences are.

Definition 1.1. A sequence {qn} is said to be equidistributed in the interval [a, b] if

• qn ∈ [a, b] for all n ∈ N.

• For all subintervals [c, d] of [a, b]

lim
N→∞

1

N

N∑
k=1

1[c,d](qk) =
d− c
b− a

where 1[c,d] is the indicator function for the interval [c, d].

For now, let’s just focus on the interval [0, 2π], and look for equidistributed sequences
in it. Observe that the second part of the above definition can be rewritten as

lim
N→∞

1

N

N∑
k=1

1[c,d](qk) =
1

2π

∫ 2π

0

1[c,d](x)dx (1)
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2 Weyl’s criterion for equidistribution

The above definition for equidistributed sequences makes sense (in the manner that
agrees with our intuition), it is a little cumbersome to work with, since one needs
to sum the indicator function of every subinterval of [0, 2π] over the entire sequence to
ensure it really is equidistributed. It would be nicer if one had a simpler, but equivalent
notion for equidistribution that was easier to work with. It turns out there is one.

Lemma 2.1. A subsequence {qk} of [0, 2π] is equidistributed iff for every continuous
function f on [0, 2π]

lim
N→∞

1

N

N∑
k=1

f(qk) =
1

2π

∫ 2π

0

f(x)dx

Proof. First we’ll show that if the sequence is equidistributed then the above equation
is correct. Consider simple functions1 on [0, 2π]. Since these functions are linear combi-
nations of indicator functions, and the indicator functions satisfy equation 1, the simple
functions also satisfy that equation, i.e.

lim
N→∞

1

N

N∑
k=1

s(qk) =
1

2π

∫ 2π

0

s(x)dx

where s is a simple function. Also, note the fact that in the compact interval [0, 2π],
for every ε > 0 and for every continuous function f , there exists a simple function s,
such that ‖f − s‖∞ < ε.

Now we’ll show that for every ε > 0, and for every continuous function f , there
exists an N ∈ N such that for all n > N∣∣∣∣∣ 1n

n∑
k=1

f(qk)−
1

2π

∫ 2π

0

f(x)dx

∣∣∣∣∣ < ε

Pick a simple function s such that ‖f − s‖∞ < ε
3
. We’ll have the following inequalities

1

2π

∣∣∣∣∫ 2π

0

f(x)dx−
∫ 2π

0

s(x)dx

∣∣∣∣ ≤ 1

2π

∣∣∣∣∫ 2π

0

(f(x)− s(x))dx

∣∣∣∣ (2)

≤ ε

3
(3)

And for all n ∈ N ∣∣∣∣∣ 1n
n∑
k=1

f(qk)−
1

n

n∑
k=1

s(qk)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
k=1

f(qk)− s(qk)

∣∣∣∣∣ (4)

≤ ε

3
(5)

1Simple functions are functions whose range is finite. These functions can be written as linear
combinations of indicator functions.
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Now pick an N large enough such that for all n > N∣∣∣∣∣ 1n
n∑
k=1

s(qk)−
1

2π

∫ 2π

0

s(x)dx

∣∣∣∣∣ < ε

3
(6)

Adding up inequalities 3, 5, and 6, we have the inequality we wanted.
Now for the converse statement. The key idea here is to approximate the indicator

function 1[c,d] with an appropriate continuous function. For a given ε > 0, consider the
following continuous approximation for the function 1[c,d]

f(x) =


1 x ∈ (c, d)

8x−8c+ε
ε

x ∈
[
c− ε

8
, c
]

8d−8x+ε
ε

x ∈
[
d, d+ ε

8

]
0 otherwise

For all x ∈ [0, 2π], we have the following inequality for the function f

1[c,d](x) ≤ f(x) ≤ 1[c− ε
8
,d+ ε

8 ](x)

Rewriting the above inequality,∣∣f(x)− 1[c,d](x)
∣∣ ≤ 1[c− ε

8
,c](x) + 1[d,d+ ε

8 ](x)

This means there exists a large enough N1, such that for all n > N1

1

n

n∑
k=1

(
1[c− ε

8
,c](qk) + 1[d,d+ ε

8 ](qk)
)
≤ ε

3

For that same N1, ∣∣∣∣∣ 1n
n∑
k=1

1[c,d](qk)−
1

n

n∑
k=1

f(qk)

∣∣∣∣∣ ≤ ε

3
(7)

Similarly,

1

2π

∣∣∣∣∫ 2π

0

f(x)dx−
∫ 2π

0

1[c,d](x)dx

∣∣∣∣ ≤ ε

3
(8)

Finally, because of our hypothesis, we have a large enough N2 such that for all n > N2,∣∣∣∣∣ 1n
n∑
k=1

f(qk)−
1

2π

∫ 2π

0

f(x)dx

∣∣∣∣∣ ≤ ε

3
(9)

Let N = max(N1, N2), and adding up inequalities 7, 8, and 9, we get our result.
This completes the proof of equivalence.

This result shows how to equidistribution in terms of continuous functions. The
next result will use Fejér’s theorem to break up the result about continuous functions
to exponential sums, giving us a much simpler formalism to work with.
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Theorem 2.2. A subsequence {qk} of [0, 2π] is equidistributed iff for all non-zero in-
tegers a

lim
n→∞

1

n

n∑
k=1

exp(iaqk) = 0

Proof. First we’ll show that if the sequence is equidistributed, then the limit is 0. Since
exp(iax) is a continuous function for all a, from lemma 2.1, we have

lim
n→∞

1

n

n∑
k=1

exp(iaqk) =
1

2π

∫ 2π

0

exp(iax)dx

= 0 (a is non-zero)

For the converse, we will use Fejér’s theorem. Given a continuous f and ε > 0, use
Fejér’s theorem to find an exponential polynomial p such that ‖p− f‖∞ < ε

3
. In that

case, we have

1

2π

∣∣∣∣∫ 2π

0

f(x)dx−
∫ 2π

0

p(x)dx

∣∣∣∣ < ε

3
(10)

and ∣∣∣∣∣ 1n
n∑
k=1

f(qk)−
1

n

n∑
k=1

p(qk)

∣∣∣∣∣ < ε

3
(11)

And because of our hypothesis, we have a large enough N , such that for all n > N∣∣∣∣∣ 1n
n∑
k=1

p(qk)−
∫ 2π

0

p(x)dx

∣∣∣∣∣ ≤ ε

3
(12)

Adding up inequalities 10, 11, and 12, we get our result.

3 Weyl’s equidistribution theorem: The weak ver-

sion

The weak version of Weyl’s equidistribution theorem states that the sequence

qk = kz mod 2π

is equidistributed in the interval [0, 2π] if z is an irrational multiple of π. This can be
shown really easily using the earlier formalisation, by looking at the exponential sums.

n∑
k=1

exp(iakz) = eiaz
1− eianz

1− eiaz

Since z is an irrational multiple of π, the denominator is non-zero for all non-zero
integers a. That means for a given a, the sum is bounded, hence

lim
n→∞

1

n

n∑
k=1

exp(iakz) = 0

and as a consequence, the sequence is equidistributed.
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4 Weyl’s equidistribution theorem: The stronger

version

Note: Since it will get a little cumbersome to keep working with integral and irrational
multiples of 2π, we will instead deal with sequences in the interval [0, 1]. The only
change we’ll need to keep in mind is that we’ll be dealing the following sum

n∑
k=1

exp(2πiaqk)

The stronger version of Weyl’s equidistribution theorem states that the sequence

qk = αk2 + βk + γ mod 1

is equidistributed if α is irrational.
This will involve showing that the sequence

Sn =
n∑
k=1

exp(2πiaqk) (13)

is o(n) for all integers n, but since α is irrational, it suffices to show it for all irrational
α. In a nutshell, we have reduced the problem of equidistribution to a problem of
bounding the given sum.

4.1 A preliminary bound for another sum

Notation: We will define the function e(x) to be e(2πix).

Lemma 4.1. For all irrational θ∣∣∣∣∣
N∑
k=1

e(nθ)

∣∣∣∣∣ ≤ min

(
N,

1

‖θ‖

)
(14)

where ‖θ‖ is distance of θ to its closest integer.

Proof. By triangle inequality, ∣∣∣∣∣
N∑
k=1

e(nθ)

∣∣∣∣∣ ≤
N∑
k=1

|e(nθ)|

= N

And summing up the geometric series, we have∣∣∣∣∣
N∑
k=1

e(nθ)

∣∣∣∣∣ ≤ 2

|1− e(θ)|

=
1

|sin(πθ)|

≤ 1

‖θ‖
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4.2 Weyl differencing

Since we want to show the sum SN (see equation 13) is in o(N), it will suffice to show
that |SN |2 is in o(N2).∣∣∣∣∣

N∑
k=1

e(f(k))

∣∣∣∣∣
2

=

(
N∑
k=1

e(f(k))

)(
N∑
k=1

e(−f(k))

)
=

∑
1≤j,l≤N

e(f(j)− f(l))

= N +
N−1∑
d=1

N−d∑
k=1

(e(f(k + d)− f(k)) + e(f(k)− f(k + d)))

= N +
N−1∑
d=1

N−d∑
k=1

2Re (e(f(k + d)− f(k)))

= N + 2
N−1∑
d=1

Re

(
N−d∑
k=1

e(f(k + d)− f(k))

)

≤ N + 2
N−1∑
d=1

∣∣∣∣∣
N−d∑
k=1

e(f(k + d)− f(k))

∣∣∣∣∣
Plugging in the quadratic polynomial in f , we get∣∣∣∣∣

N∑
k=1

e(qk)

∣∣∣∣∣
2

≤ N + 2
N−1∑
d=1

∣∣∣∣∣
N−d∑
k=1

e((2αd)k)

∣∣∣∣∣
≤ N + 2

N∑
d=1

min

(
N,

1

‖2αd‖

)

Since N is in o(N2), all we need to show is that
N∑
d=1

min

(
N,

1

‖2αd‖

)
is also in o(N2).

4.3 Rational approximation of irrational numbers

The main result of this section will show that given an irrational number α, it’s possible
to find infinitely many rational numbers p

q
(gcd(p, q) = 1) such that |α − p

q
| < 1

q2
. We

will need this result to bound the main sum.

Proposition 4.2. Given an irrational number α and N ∈ N, there exists a rational
number p

q
such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q(N + 1)

and |q| ≤ N .
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Proof. Consider the following sequence modulo 1:

α, 2α, 3α, . . . , Nα

Divide [0, 1] into N + 1 equally sized intervals. Clearly, one of the elements of that
sequence must either lie in the subinterval

[
0, 1

N+1

]
, or

[
N
N+1

, 1
]
. Call that element qα.

In that case, the following inequality holds:

‖qα‖ ≤ 1

N + 1

Let the integer closest to qα be p. In that case

|p− qα| ≤ 1

N + 1∣∣∣∣pq − α
∣∣∣∣ ≤ 1

q(N + 1)

And since q < N + 1 ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

Corollary 4.3. If α is irrational, there are infinitely many rational numbers p
q

such
that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

Proof. Suppose there were finitely many. Take the minimal distance d of α with the
rational approximations. Pick a large enough N such that 1

N+1
< d. Use that N in

proposition 4.2 and get a contradiction.

4.4 Bounding the complete sum[1]

At the end of section 4.2, we saw that all we need to do is to show that the following
sum

WN =
N∑
d=1

min

(
N,

1

‖2αd‖

)
is in o(N2).

Lemma 4.4. If α1, α2, . . . , αN are real numbers such that ‖αi − αj‖ ≥ 1
r

for some
natural number r when i 6= j. Then

N∑
i=1

min

(
1

‖αi‖
, N

)
≤ 2N + 2r(log(N) + 2)
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Proof. Without loss of generality, assume all the αi lie within
[
−1

2
, 1
2

]
. Furthermore,

at least half the sum will either come from the positive or the negative αi. WLOG,
assume it’s the positive αi. Then we can just double the sum to get an upper bound.
Assume that α1 < α2 < · · · < αn, where α1 to αn are the positive αi. In that case

n∑
i=1

min

(
1

‖αi‖
, N

)
≤ N +

⌊ r
N

⌋
N +

∑
i>b r

N c

r

i

(
Because ‖αi − αj‖ >

1

r

)

The last term can have at most n terms, hence it is bounded by r(log(n) + 1). But n is
smaller than or equal to N , since n is the number of positive αi. Hence the last term
is bounded by r(log(N) + 1). The second term is bounded by r, and the first term is
N . Hence the complete bound is

n∑
i=1

min

(
1

‖αi‖
, N

)
≤ N + r + r(log(n) + 1)

Since this is at least half the total sum, we get our bound.

Lemma 4.5. If p
q

is a rational approximation for α such that
∣∣∣α− p

q

∣∣∣ < 1
q2

, then

N∑
d=1

min

(
1

‖αd‖
, N

)
≤
(

2N

q

)
(2N + 4q(log(N) + 2))

Proof. We have the following inequality, which is not too hard to prove:

‖iα− jα‖ ≥
∥∥∥∥(i− j)p

q

∥∥∥∥− |i− j|q2

(
Taylor expand around

p

q

)
When |i− j| ≤ q

2
, then (i−j)p

q
is not an integer since p and q are co-prime. That means∥∥∥∥(i− j)p

q

∥∥∥∥ ≥ 1

q

and

|i− j|
q2

≤ 1

2q

which means

‖iα− jα‖ ≥ 1

2q

Now we split up the range of summation, i.e. the interval [1, N ] into intervals of
length q

2
. To compute the sum over each of these intervals, we’ll use lemma 4.4 with

r = 2q. We’ll have 2N
q

such intervals, over each of which, the sum will be be bounded

by (2N + 4q(log(N) + 2)). The complete bound is hence

WN ≤
(

2N

q

)
(2N + 4q(log(N) + 2))

As N goes to infinity, the WN

N2 becomes 2
q
. But since α is irrational, q can be as large

as possible. This shows that WN is in o(N2).
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