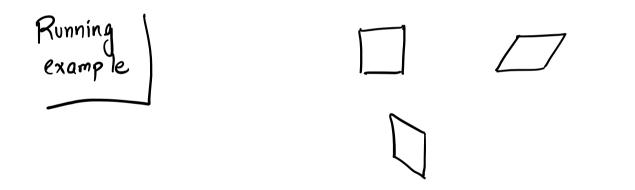
The Siegel-Veech transform

Outline

- 1. What is a translation surface?
- 2. What can we count?
- 3. The Siegel-Veech transform
- 4. Proving the counting result using equidistribution

1. What is a translation surface?

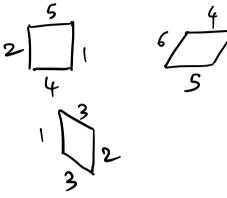
A translation surface is a finite collection of polygons in \mathbb{C} along with some gluing data, up to an equivalence relation.



Gluing data

To each edge e, associate a complex number h(e).

Gilving rules i) Every edge is glued to exactly one other edge

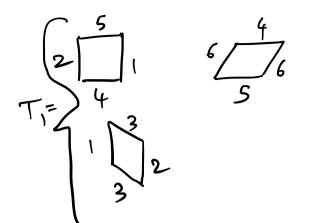


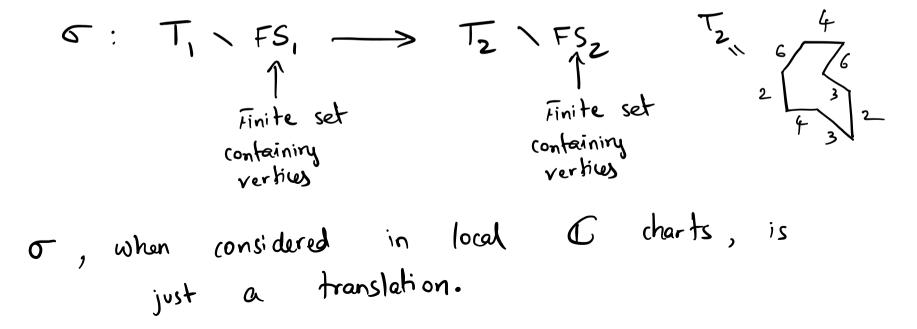
 $e_{v_{1}}$ $h(e) = v_{1} - v_{2}$

ii) Edges e, & e, can be glued only if $h(e_1) = -h(e_2)$

Equivalence relation

Two translation surfaces are equivalent if there is a bijective map 5





Objects on a translation surface

SL(2, \mathbb{R}) action on \mathcal{M} We have a lebesgue We have a linear action of class measure on M. (Masur-Veech) SL(2, IR) on C. Thm Mrv is SL(2,)R) invariant & ergodic. Action on polygons while respecting gluing rule & equivalence relation Furthermore, we have a "classification" of SL(?,)R) ergodic measures. Action of SL(2, IR) Thm (EMM) | SL(2,1R) ergodic the canonical measures are on MLebesque class measures on

2. What can we count?

For each
$$SC/CV$$
, we have a
well defined pair of vectors in IR^2 .
For translation surface S
 $V_{cv}(S) = M_{u}$ (tiltiset of
 $V_{cv}(S) = Vectors associated
to all cylinder
vectors in S
 $V_{sc}(S) = Same as above,$
 $but with saddle
connections
 $V_{sc}(S) = Same as above,$
 $V_{sc}(S) = Same as above,$
 $U_{sc}(S) = Same as above,$
 $V_{sc}(S) = Same as above,$
 $U_{sc}(S) = Same as above,$
 $V_{sc}(S) = Same as above,$
 $U_{sc}(S) = Same as above,$
 $V_{sc}(S) = Same as above,$
 $V_{sc}(S) = Same as above,$
 $U_{sc}(S) = Sa$$$

The main counting theorem Let $V: (\mathcal{M}, \mu) \longrightarrow \mathcal{M}_{in} \mathbb{R}^2 \setminus So_0$ Satisfying the following conditions ¥ ju a.e S (A) For all gE SL(2, IR) $\lim_{R \to \infty} \frac{\#(\gamma(s) \cap B(o, R))}{\pi R^2}$ V(qS) = qV(S)(B) For any SEM, F(s) > 0sit $\#(V(s) \cap B(0, R)) \leq c(s) \cdot R^2$ f(s) can be chosen uniformly f(s) can be chosen uniformly f(s) compact sets. (then CV, M (ζ_{μ}) For large enough R \mathcal{E} small enough \mathcal{E} , $\#(v(s) \cap B(o, R))$, ITE.

The main counting theorem

(A) For all
$$g \in SL(2, \mathbb{R})$$

 $V(gS) = gV(S)$
(B) For any $S \in M$, $F = c(S) > 0$
 $s:t$
 $\#(V(S) \cap B(0, \mathbb{R})) \leq c(S) \cdot \mathbb{R}^{2}$
 $c(S)$ can be chosen uniformly
on compact sets.
(μ) For large enough $\mathbb{R} \notin S$ small
enough \mathcal{E} , $\#(V(S) \cap B(0, \mathbb{R}))$
 $is in L^{ITE}(M)$

Other settings

The statement is quite general. (i.e. can replace (M, M) with any ergodic setup & 2 with m).

$$SL(m,R) C \left(\frac{SL(m,R)}{SL(m,Z)}, Haar \right)$$

3. The Siegel-Veech transform Suppose $f \in C_{0}^{\infty}(\mathbb{R}^{2})$ for technical reason Example one ought to think of: smoothened out indicator of ball or annulus $\hat{f}: \mathcal{M} \longrightarrow \mathbb{R}$ $\hat{f}(S) := \sum_{v \in V(S)} f(v)$

(Assumption (B) guaranties well definedness & uniform bd on compacts. (Cu) guarantees $f \in L^{I+\epsilon}(\mathcal{M}, \mathcal{M})$

Siegel-Veech constants
Thm Let
$$\mu$$
 be an $SL(2, IR)$ ergodic measure,
 $g \lor be a function satisfying (A), (B), g (C_{\mu})$.
Then
 $\int \hat{f}(S) d\mu(S) = C_{V,\mu} \int f(a, j) da dy \cdot \int_{f=0}^{(v,\mu)} g f(a, j) da dy \cdot$

Proof Consider the linear functional ϕ on $C_{o}^{\infty}(\mathbb{R}^{2})$. $\phi(f) := \int \hat{f}(s) d\mu$ We have an $SL(2, \mathbb{R})$ action on $G^{\infty}(\mathbb{R})$ $(\gamma \cdot f)(n) = f(\gamma n).$ µ is also SL(2,1R) invariant. But Let's compute $\phi(\gamma f)$

Proof (contd.)

$$\phi(\gamma \cdot f) := \int_{M} \widehat{\gamma} \cdot F(s) \, d\mu = \int_{M} \sum_{v \in V(s)} \gamma \cdot f(v) \, d\mu$$

$$= \int_{M} \sum_{v \in V(s)} f(\gamma \cdot v) \, d\mu = \int_{M} \sum_{w \in V(\gamma \cdot s)} f(w) \, d\mu$$

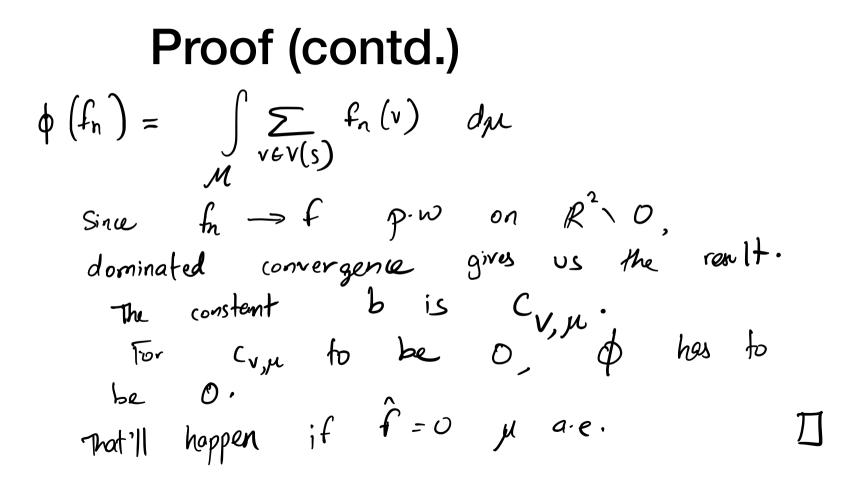
$$= \int_{M} \widehat{f}(\gamma \cdot s) \, d\mu = \int_{M} \widehat{f}(s) \, d\mu$$

$$\phi \text{ is an } SL(2, R) \text{ invariant functional.}$$

Proof (contd.) Recall that $SL(2, \mathbb{R})$ action on \mathbb{R}^2 has two orbits: $O \ \mathcal{R} \ \mathbb{R}^2 \setminus \{0\}$. $\phi(f) = a \cdot f(0,0) + b \int f(x,y) dx dy$ \mathbb{R}^2 Need to show a = 0.

Proof (contd.)
Define a sequence of opproximating functions
$$f_n$$
.

$$f_n(z) = \begin{cases} 0 & \text{if } |z| < \frac{1}{n} \\ f(z) & \text{if } |z| > 2t \\ \text{smoothly interpolates in } b/w. \end{cases}$$
Idea: Show $\lim_{n \to \infty} \phi(f_n) = \phi(f).$
Since $f_n(o) = 0 + n$, this will imply $q = 0$



4. Counting from equidistribution

Equidistributing wavefront points

We'll prove the counting result for a special
class of translation surfaces.

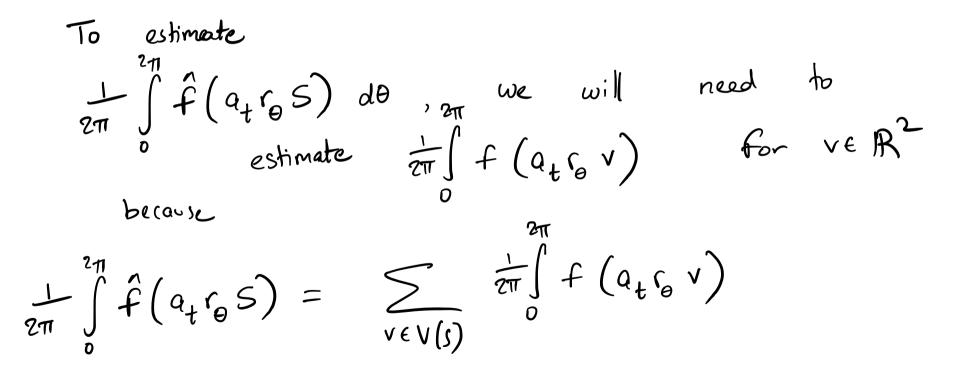
$$\lim_{t \to \infty} \frac{1}{2\pi} \hat{f}(Q_t r_0 S) dt = \int \hat{f}(R) \, d\mu(R) \quad (\neq)$$

$$a_t = \begin{pmatrix} e^t \circ \\ \circ e^{-t} \end{pmatrix} \quad f_{\Theta} = \begin{pmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{pmatrix}$$

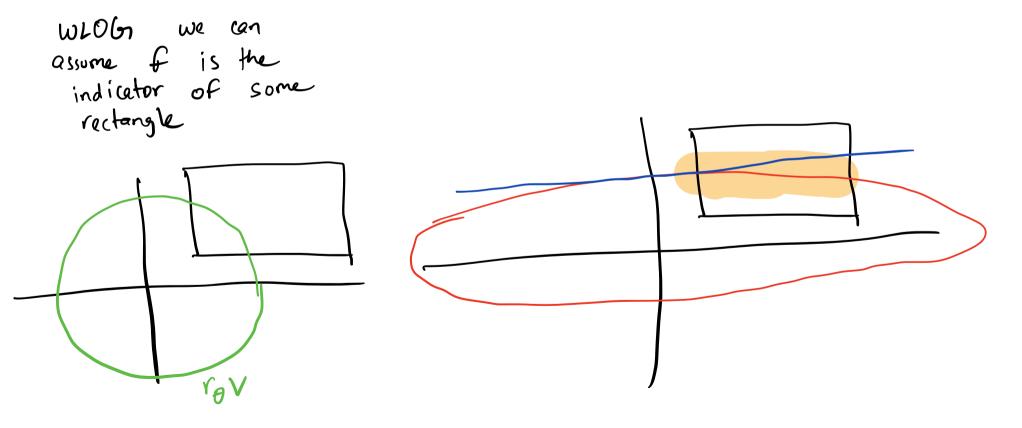
$$a_t r_{\Theta} S \quad \text{is like a wavefront emanaling} from S.$$

Counting result for equidistributing wavefronts $\underbrace{\text{Thm}}_{R \to \infty} = \operatorname{TC}_{V, \mathcal{U}}$

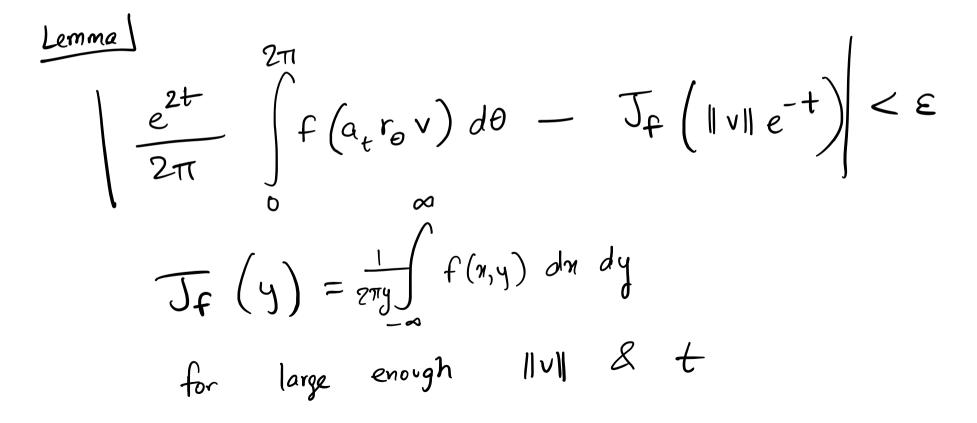
Wavefront average estimates on \mathbb{R}^2

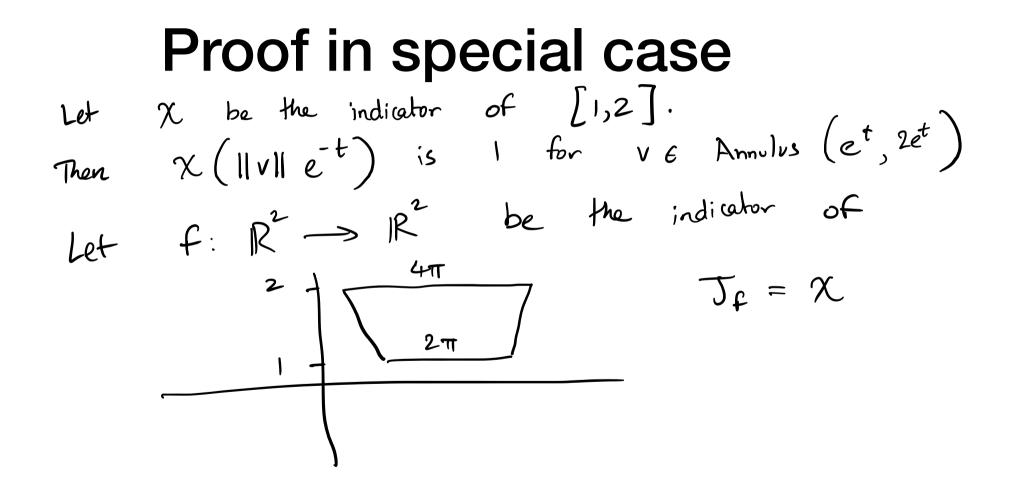


Wavefront average estimates on \mathbb{R}^2



Wavefront average estimates on \mathbb{R}^2





For large enough
$$\|v\| \& t$$
, we get

$$\frac{e^{2t}}{2\pi} \int_{0}^{2\pi} f(q_{t}r_{\theta}v) d\theta - \varepsilon \qquad \text{Sum both sides} \\ over all $v \in V(s)$

$$\frac{e^{2t}}{2\pi} \int_{0}^{2\pi} f(q_{t}r_{\theta}v) d\theta + \varepsilon$$$$

 $\sum_{v \in V(s)} \int f(q_t r_{\theta} v) d\theta + \varepsilon$ $= \frac{e^{l+1}}{2\pi} \int \hat{F}(a_{t}r_{\theta}S) \pm ce^{2t} \varepsilon$ $\sum_{v \in V(s)} \chi(\|v\|e^{-t}) = \#(V(s) \cap Annulus(e^{t}, 2e^{t}))$ Divide by e²⁺

_

$$\begin{array}{rcl}
& & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

 $= \underbrace{\#\left(v(s) \cap A_{mn}\left(e^{t}, 2e^{t}\right)\right)}_{e^{2t}}$ lim $= \int_{M} \hat{f}(S) dM$ $= \int_{M} Siegel - Veech$ $C_{v,\mu}\int_{\mathbb{R}^2} \mathcal{F} = (3\pi) C_{v,\mu}$

Things that were swept under the rug. Wavefront averages are convolved with a probability density φ centered at 0. $\lim_{t\to\infty}\int \varphi(z-t)\frac{1}{2\pi}\int f(a_tr_{\theta}S)\,d\theta$ 2) Same for SV transform of indicator functions.

SL(?,R) ergodic measures on translation Surfaces are classified.