
Moduli of Curves

Taught by Aaron Pixton
Lecture notes by Sayantan Khan

October 23, 2022

Contents

1 The topological picture of Mod(g) and Mg 1
1.1 Classifying spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Variants of the mapping class group . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Group-theoretic properties of Mod(g) . . . . . . . . . . . . . . . . . . . . . . 4
1.4 What do elements of H2(Mod(g),Q) look like? . . . . . . . . . . . . . . . . . 6
1.5 What do elements of H2(Mod(g, 1),Q) look like? . . . . . . . . . . . . . . . . 8
1.6 Results about H∗(Mg,Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 The Harer-Zagier results . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.2 Mumford’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.3 Construction of suitable simplicial complexes . . . . . . . . . . . . . . 11
1.6.4 The first step towards Mumford’s conjecture . . . . . . . . . . . . . . 12
1.6.5 Summary of what we know about H∗(Mg,Q) . . . . . . . . . . . . . . 13

2 Mg via algebraic geometry 13
2.1 The algebro-geometric description ofMg . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Description of all low genus curves . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Where do the descriptions come from? . . . . . . . . . . . . . . . . . . 17
2.1.3 Hilbert polynomials and Hilbert schemes . . . . . . . . . . . . . . . . . 18
2.1.4 Construction ofMg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The Deligne-Mumford compactification . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 The algebraic and topological pictures . . . . . . . . . . . . . . . . . . 23
2.2.2 The Teichmüller theoretic picture . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Examples of compactified moduli spaces . . . . . . . . . . . . . . . . . 25
2.2.4 Dual graph to a nodal curve . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.5 Gluing maps and stabilization . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.6 Describing elements of H2(M0,n) . . . . . . . . . . . . . . . . . . . . . 31

A List of notation 33

1 The topological picture of Mod(g) and Mg

There are several reasons a topologist (and not a hyperbolic/complex geometer) would want
to study Mod(g),Mg, and Tg.
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– Recall that Mg = Tg/Mod(g). If we care about Tg, then Mod(g) is a nice group
of isometries, or if we care about Mg, then we need to understand Mod(g) to use
Teichmüller theory.

– Mod(g) is also an index two subgroup of Out(π1(Sg)). This is somewhat related to
Out(Fn) (see the Dehn-Nielsen-Baer theorem in [Far12]).

– We can also try to understand all self homeomorphisms of S. In particular, that means
being able to answer questions like which homeomorphisms are isotopic to products of
Dehn twists about disjoint curves.

– This is also useful when trying to understand surface bundles. In loose terms, a map
from some space B to Mg should correspond to a surface bundle over B in a natural
manner. Suppose π : E → B is an oriented fiber bundle with fiber S = S3, i.e. B can
be covered by opens U such that π|π−1(U)

∼= pr1 : U × S → U .

Given a loop in B, we can pull it back to a surface bundle over S1, which is the mapping
torus of a orientation preserving homeomorphism of S. This gives us a map from π1(B)
to Mod(g) (one may need to worry about conjugation on the source and the target).
This map, called the monodromy representation, gives the following bijection, which
completely determines the surface bundle.

{Genus g surface bundles on B} → Hom(π1(B),Mod(g)) /Mod(g)

The last point in particular necessitates a need for a theory that lets us organize the data
of surface bundles, and their structure group Diff+(S) (whose quotient by the connected
component of the identity is Mod(g)). This is where classifying spaces come in.

1.1 Classifying spaces

Definition 1.1 (Classifying space). Suppose X is a contractible topological space, and G is
a topological group acting on X freely, continuously, and properly on X. Then X/G is called
a classifying space for G, and denoted BG, while X is denoted EG. ⋄

Some facts about classifying spaces.

– An EG (and thus a BG) always exist.

– BG is unique up to homotopy equivalence.

– If G is discrete, then BG is a K(G, 1) space.

– Homotopy types of maps from any B to BG correspond to isomorphism classes of
principal G-bundles on B. If we specialize to the case where G = Homeo+(S), then
a principal G-bundle over B corresponds exactly to an oriented Sg bundle by picking
the same transition functions over the locally trivializing neighbourhoods. That means
oriented genus g surface bundles on B correspond to homotopy classes of maps B to
B(Homeo+(S)).
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How does the bijection actually work? Define a “universal” surface bundle onB(Homeo+(S))
by taking the following projection map.

pr1 : E(Homeo+(S))× S → E(Homeo+(S))

Then quotient out by the diagonal action of Homeo+(S). This gives us a surface bundle.

π :
(
E(Homeo+(S))× S

)
/Homeo+(S)→ B(Homeo+(S))

Given B → B(Homeo+(S)), we can pull back the universal bundle to define a surface bundle
on B. It turns out that every surface bundle can be obtained by pulling back in this manner.

The way we link all this up to Mod(g) by using the following fact.

B(Homeo+(S)) ∼= B(Mod(g))

This follows from the long exact sequence for fibrations, and the fact that Homeo+0 (S) is
contractible. Unfortunately, it is not the case that B(Mod(g)) ≃ Mg, since the mapping
class group does not act freely on Tg.

Looking at cohomology gives invariants of maps B → B(Mod(g)), and thus, invariants
of surface bundles. Given α ∈ H∗(B(Mod(g)),Z) and a surface bundle on a space B, p∗α ∈
H∗(B,Z) is a well defined invariant of the bundle, where p : B → B(Mod(g)) is given by
the bundle. Each α ∈ H∗(B(Mod(g)),Z) defines a characteristic class for genus g surface
bundles.

Example 1.2 (Complex vector bundles). The classifying space for complex vector bundles
is B(GL(n,C)), which is homotopy equivalent to Grn(C∞) = {V ⊆ C∞| dim(V ) = n}. If we
now pull back the cohomology of the classifying space, we get Chern classes. ⋄

There is a natural map from B(Mod(g)) to Mg which induces isomorphism on ratio-
nal cohomology, so rational characteristic classes of surface bundles correspond to rational
cohomology classes ofMg. To construct the map, consider the following related map.

pr2 : E(Mod(g))× Tg → Tg

Consider the diagonal action of Mod(g) on the left, and the standard action on the right, and
if we quotient out by that action, that is up to homotopy, the same quotienting E(Mod(g)),
since Tg is contractible. The induced map on the quotient is the map we need.

π : B(Mod(g))→Mg

1.2 Variants of the mapping class group

A lot of the more elementary mapping class group facts in this and the following section are
from [Far12].

It will be convenient to study not just Mod(g), but also Mod(g, n), i.e. the mapping class
group of a genus g surface with n marked points (where the mapping class group does not
permute the points), and also Mod1(g), which is the mapping class group of a genus g surface
with 1 boundary component, where the mapping classes fix the boundary pointwise.
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These variants of the mapping class groups are quite close to each other. We have the
following surjections with fairly simple kernels.

Mod1(g) ↠ Mod(g, 1) ↠ Mod(g)

The first surjection is given by the capping homomorphism.

c : Mod1(g)→ Mod(g, 1)

The map is given by gluing in a disk with a marked point along the boundary (attaching a
cap). The surjectivity follows from the fact that a map of a disk fixing a point is isotopic to
the identity.

The second surjection is given by the forgetful homomorphism.

π : Mod(g, 1)→ Mod(g)

The map is identity, but we no longer fix the marked point.

What are the kernels? For the capping homomorphism, the kernel is the subgroup iso-
morphic to Z generated by Dehn twists around a curve isotopic to the boundary. The fact
that this subgroup is contained in the kernel can be seen explicitly, or also as a consequence
of Alexander’s trick. To show that the subgroup is the entire kernel, consider an [f ] ∈ ker(c).
This preserves every simple closed curve on the surface with boundary. This is particu-
lar implies f is isotopic to the identity away from the boundary. That means [f ] lies in
Mod(Annulus), which is exactly Z. In particular, we get a nice short exact sequence.

1→ Z→ Mod1(g)→ Mod(g, 1)→ 1

This also happens to be a central extension, since the kernel is in the centre of Mod1(g)∗.
The kernel of the forgetful homomorphism is π1(S, p). It fits into the Birman exact

sequence.

1→ π1(S, p)
Push−−−→ Mod(g, 1)

π−→ Mod(g)→ 1

How is Push defined? Given a loop in S based at p, choose an isotopy starting at the
identity map idS , such that the point p moves along a given loop. This element of Mod(g)g, 1
is clearly in the kernel of π. To see that this is the entire kernel, consider the natural map
from ker(π) to π1(S, p).

1.3 Group-theoretic properties of Mod(g)

Fact 1.3. Mod(g) can be finitely generated by Dehn twists about non separating curves.
This result also holds for the other variants we defined previously.

Fact 1.4. Mod(g) is finitely presented with respect to such Dehn twist generators. This can
be done fairly explicitly.

∗A related fact of independent topological interest is that this short exact sequence splits, which tells us
that Mod1(g) is the semidirect product Mod(g, 1)⋉ Z.
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Figure 1: Lickorish generators for Mod(g).

Theorem 1.5 (First homology of the mapping class group). For g ≥ 3, the first homology
of Mod(g) vanishes.

H1(Mod(g),Z) = 0

Remark 1.6. The proof uses lantern relations. Consider a sphere with 4 boundary compo-
nents. Consider the blue curves A, B, and C, and the red curves R, S, T , and U as shown
in Figure 2. Then the following relations holds in Mod4(0).

TATBTC = TRTSTTTU

⋄

Figure 2: The curves in the lantern relation.

Proof of Theorem 1.5. It suffices to show that the abelianization of Mod(g) is trivial. Let t
be the image of a Dehn twist Tc along a non-separating curve in the abelianization. All such
Dehn twists are conjugate by change of basis. Thus t does not depend on the choice c. Since
such Tc generate Mod(g), t generates the abelianization.

If we could embed a lantern L in Sg such that all seven curves were non-separating, we
would get that t3 = t4, which would prove the result. This turns out to be possible if g ≥ 3
as seen in Figure 3.
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Figure 3: Embedding a lantern in a high genus surface. All the boundary components with
the same labelling get glued, and this results in a surface with genus at least 3. Figure from
[Far12].

Remark 1.7. The first Z homology of Mod(2) is Z/10. This doesn’t matter too much for
us, since H1(Mod(2),Q) = 0. ⋄

Theorem 1.8 (Harer [Har83]). Suppose g ≥ 4. Then the second homology of Mod(g) and
its variants turn out to be the following.

(i) H2(Mod(g),Z) ∼= Z

(ii) H2(Mod(g, 1),Z) ∼= Z⊕ Z

(iii) H2(Mod1(g),Z) ∼= Z

Theorem 1.9 (Harer [Har85]). For high enough genus, the higher homology groups of Mod(g)
turn out to be the following.

(i) H3(Mod(g),Z) ∼= 0 for g ≥ 3.

(ii) H4(Mod(g),Q) ∼= Q2 for g ≥ 10.

1.4 What do elements of H2(Mod(g),Q) look like?

A well-known non-trivial element of H2(Mod(g),Q) is the signature invariant, denoted by σ.
There are several ways to define it, or a non-zero multiple of it.
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Signature invariant as a bundle invariant We can think of elements in H2(Mod(g),Q)
as invariants of surface bundles. Given a surface bundle p : E → B, we want an element σ
in H2(B,Z) such that if we have a map f : B′ → B, then f∗σ should be the corresponding
invariant of the pullback bundle f∗p : E′ → B′. Once we have something like this, the general
theory of classifying spaces will tell us σ is the pullback of an element in the cohomology of
the classifying space, which in this case isMg.

We describe this invariant σ as a function on 2-chains given by a single map f : Σ→ B,
where Σ is a compact oriented surface of some genus. Then we can pull back the bundle to a
surface bundle over Σ to get f∗p :M → Σ, whereM is a compact 4-manifold, and take as our
2-cocycle function the signature of the following quadratic form given by the cup product.

H2(M,Q)×H2(M,Q)→ H4(M,Q) ∼= Q

Theorem 1.10 (Meyer [Mey73]). This is a well-defined cocycle.

This construction gives us a σ ∈ H2(Mod(g),Z). To show that this is actually a non-
trivial element in the cohomology, it suffices to exhibit a surface bundle over a surface with
non-zero signature. This is possible to do, but we will skip the details of such a construction.

A group theoretic description of the invariant σ Consider the following homomor-
phism.

ρ : Mod(g)→ Sp2g(Z)

This homomorphism is given by the action of Mod(g) on the first Z-coefficient homology of
Sg. This action preserves the intersection pairing on H1(Sg,Z), and as a consequence, gives
us a map into Sp2g(Z).

Facts about the symplectic representation ρ

– ρ is surjective.

– The kernel of ρ is denoted Ig, and known as the Torelli group. The Torelli subgroup is
torsion free. This can be proven using the Lefschetz fixed point theorem.

– Sp2g(Z) is virtually torsion free. This follows from Selberg’s lemma, or one can con-
cretely verify the congruence subgroup for m = 3 is torsion free. This, along with the
previous point imply that Mod(g) is virtually torsion free.

– H2(Sp2g(Z),Z) ∼= Z.

We can pull back the generator of the second Z cohomology of Sp2g(Z) along ρ to get an

element in H2(Mod(g),Z). It turns out that the pullback is ±1
4σ. In some sense, this is

telling us that signature of a 4-manifold fiberd over a surface only depends on the monodromy
representation into Sp2g(Z), and not the monodromy representation into Mod(g).

In the language of Q-classifying spaces, the map ρ translates into the Abel-Jacobi map.

AJ :Mg → Ag

Here Ag is the moduli space of Jacobians (i.e. principally polarised abelian varieties).
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Third description of σ Let ψ = −e (where e ∈ H2(Mg,1,Q)). The class ψ can be thought
of as the Euler class of the vector bundle onMg,1 by the cotangent space at the marked point.
Let π : Mg,1 → Mg be the forgetful map. Generically, the fiber over [C] ∈ Mg is C. In
particular, the fiber is still a compact surface.

The compactness of the fibers means we can define a pushforward map.

π∗ : H
∗(Mg,1,Q)→ H∗−2(Mg,Q)

This pushforward is given by taking trace, i.e. fiberwise integration of differential forms.

Definition 1.11. We define elements κj in H∗(Mg,Q) in the following manner.

κj := π∗(ψ
j+1
1 ) ∈ H2j(Mg,Q)

⋄

Fact 1.12. The class κ1 is a non-zero multiple of σ.

1.5 What do elements of H2(Mod(g, 1),Q) look like?

Recall thatH2(Mod(g, 1),Q) ∼= Q⊕Q. We can immediately define one element here by pulling
back σ along the surjective map (given by the forgetful homomorphism) from Mod(g, 1) to
Mod(g). This accounts for one copy of Q. The second generator in H2(Mod(g, 1),Z) is called
e (for Euler class).

Describing e as a bundle invariant Given a surface bundle p : E → B, and a section
s, we want an element in H2(B,Z). Let V be the fiber direction tangent bundle on E, i.e.
V is a rank 2 R-vector bundle given at point x ∈ E by the tangent space at x of the fiber
p−1(p(x)).

We can take the Euler class e(V ) ∈ H2(E,Z). Informally, the Euler class is the vanishing
locus of a generic section. We define e to be the pullback of e(V ) by s, i.e. s∗e(V ).

Example 1.13. Let S be a surface of genus at least 2. Consider the surface bundle pr1 :
S × S → S, with the diagonal section s : p 7→ (p, p). In this case, the element e turns out to
be χ(S) · [S], which is non-zero. Furthermore, the signature invariant σ turns out to be 0 in
this case since the bundle was trivial. ⋄

Second description of e via group cohomology We have the following fact about group
cohomology.

Fact 1.14. H2(G,Z) is exactly the isomorphism classes of central extensions of G by Z.

Recall that the capping homomorphism was a central extension of Mod(g, 1) by Z. That
gives us an element in H2(Mod(g, 1),Z), and as it turns out, we end up with e.

One can check this agrees with the geometric definition of e obtained from the surface
bundle S×S → S, with the diagonal section by using the monodromy representation π1(S)→
Mod(g, 1). In this case, this map is precisely the Push homomorphism in the Birman exact
sequence.
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1.6 Results about H∗(Mg,Q)

These results point in two different directions.

1.6.1 The Harer-Zagier results

These results are about Euler characteristic. To make things clearer, we’ll define the versions
of Euler characteristic that we will use.

Definition 1.15 (Regular Euler characteristic). Given a topological spaceX, its Euler char-
acteristic χ(X) is defined in the following manner.

χ(X) =
∑
i≥0

(−1)i dimQH
i(X,Q)

⋄

Euler characteristic behaves nicely with respect to fiber bundles: given a fiber bundle
E → B with fibers F , then the Euler characteristic χ(E) of E is the product of the Euler
characteristics of the fiber and the base, i.e. χ(F ) · χ(B).

We would also like to think about orbifold Euler characteristic. Recall that Mg locally
around [C] looks like C3g−3/Aut(C), where Aut(C) is the finite automorphism group of C.
Also, we saw that the symplectic representation gives us a finite index torsion free subgroup
of Mod(g), which we’ll denote by Γ. Then Γ has trivial intersection with Aut(C). Then
Tg/Γ is actually a complex manifold, andMg can be realized as a quotient of this complex
manifold by a finite group.

Mg = (Tg/Γ) / (Mod(g)/Γ)

Definition 1.16 (Orbifold Euler characteristic). The orbifold Euler characteristic ofMg is
defined by the following formula.

χorb(Mg) :=
χ (Tg/Γ)
|Mod(g)/Γ|

⋄

Exercise 1.1. Check that this definition does not depend on the choice of the finite index
torsion free subgroup Γ.

One can similarly define χorb(Mg,1), and then we get the orbifold fiber bundle π :
Mg,1 → Mg satisfies the multiplicative formula for Euler characteristic, i.e. χorb(Mg,1) =
χorb(Mg)χ(S).

Theorem 1.17 (Harer-Zagier [HZ86]). The orbifold Euler characteristic can be expressed in
terms of the Riemann zeta function (or the Bernoulli numbers) in the following manner.

χorb = ζ(1− 2g)

= −B2g

2g
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Remark 1.18. |B2g| grows very quickly in g, roughly g2g

Cg for some C > 0. ⋄

Remark 1.19. Harer and Zagier used this result to give more complicated formulas for
χ(Mg) and χ(Mg,1). These have roughly the same asymptotics as the orbifold Euler char-
acteristic. Informally, this is because most high genus surfaces have small automorphism
groups. ⋄

Remark 1.20. The Bernoulli numbers {B2g} alternate in sign, which means H∗(Mg,Q)
contain a lot of both even and odd cohomology. ⋄

g 2 3 4 5 6 7 8 9 10 11 12 13 14 15

χ(Mg) 1 3 2 3 4 1 −6 45 −86 173 −100 2641 −48311 717766

Table 1: The Euler characteristics ofMg.

1.6.2 Mumford’s conjecture

Theorem 1.21 (Mumford’s conjecture (proved by Madsen-Weiss in 2007 [MW07])). For
each d ≥ 0, there exists gd ≥ 2 such that for all g ≥ gd, the following homomorphism of
graded rings is an isomorphism in degree less than of equal to d.

Q [x1, x2, . . .]→ H∗(Mg,Q)

xi 7→ κi ∈ H2i

Informally, this says that as g goes the infinity, the cohomology ring of Mg looks like a
polynomial ring with generators κi. A variant of this result says that the cohomology ring of
Mg,n looks like a polynomial ring in ψi and π

∗κi.

Cohomology of Grassmannians Let Gr(Cn, k) = {V ⊆ Cn | dimC V = k}. One way of
defining cohomology classes on Gr(Cn, k) is to take the tautological rank k vector bundle X.

X = {(V, p) ∈ Gr(Cn, k)× Cn | p ∈ V }

Then the Chern classes of this vector bundle are elements in the cohomology of the Grass-
mannian. In this way, we get k Chern classes αi ∈ H2i(Gr(Cn, k)) for i between 1 to k.

Fact 1.22. The {αi} generate the cohomology ring of the Grassmannian. The limiting
cohomology ring as n approaches ∞ is also nicely behaved.

lim
n→∞

H∗(Gr(Cn, k),Q) ∼= Q [α1, . . . , αk]

Remarks about Mumford’s conjecture

– Unlike in the case of Grassmannians, the κi do not generate H∗(Mg,Q): in fact they
only generate a tiny piece of it, since dimQQ [x1, x2, . . .]≤6g−6, where xi has degree 2i,

grows like eC
√
g, which is much slower than the Harer-Zagier result.
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– Mumford suggested studying this subring generated by the κ classes, called the tauto-
logical ring, denoted RH∗(Mg) ⊆ H∗(Mg,Q). The philosophy was that most naturally
occurring cohomology classes mostly were in this subring. The problem however is that
we don’t know the structure of the tautological ring. We don’t have a Schubert calculus
for the relations between the generators.

– One can conclude that for small d, Hd(Mg,n) looks like a polynomial ring with genera-
tors we understand geometrically. For larger d, Harer-Zagier gives that the cohomology
Hd(Mg,n) is huge at some point. The cohomology starts vanishing after dimension
6g− 6+2n, sinceMg,n can be modelled with a CW-complex of dimension 6g− 6+2n.

1.6.3 Construction of suitable simplicial complexes

The approach used in the proof of both these results is to construct a nice simplicial/cell
complex carrying a nice action of Mod(g). A simple example of such a technique is the
following: consider the cell complex whose 0-cells are the isotopy classes of simple closed
curves. The 1-cells are edges joining pairs of simple closed curves that don’t intersect. The
mapping class groups acts on this complex with finitely many orbits. This complex is the
1-skeleton of the curve complex. In fact, one can construct the full curve complex in this
manner.

Definition 1.23 (The curve complex). The curve complex Z on S is a simplicial complex
where n-simplices correspond to collections of n + 1 pairwise disjoint non-isotopic isotopy
classes of simple closed curves. ⋄

Exercise 1.2. Show that Z has dimension 3g − 4, and the top dimensional simplices corre-
spond to pants decompositions.

Now we’ll construct the simplicial complex used in Harer’s proof. Suppose Sg has a
basepoint at p.

Definition 1.24 (Harer, “complex of arc-systems”). Let A be the complex with n-simplices
corresponding to collections of n+ 1 isotopy classes of simple closed curves based at p, non-
trivial, pairwise non-isotopic, pairwise only intersecting at p. ⋄

Exercise 1.3. Show that dimA = 6g − 4.

We say that such a collection of curves fills Sg if the complement in Sg is a disjoint union
of discs.

Definition 1.25. A∞ ⊂ A is the sub-complex of simplices corresponding to collections of
curves that do not fill S. ⋄

Theorem 1.26 (Harer). A and A\A∞ are both contractible. Furthermore, A\A∞ is
Mod(g, 1)-equivariantly homeomorphic to Tg,1.
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Notes about Harer’s theorem

– The action of Mod(g, 1) on A preserves A∞, so Mod(g, 1) acts on the complement.

– The action of Mod(g, 1) on A\A∞ has finite stabilizers, since if a self homeomorphism
of S fixes all the curves in a filling collection , it is isotopic to the identity, i.e. a
stabilizer can now only permute the cells, of which we have finitely many.

This means if A\A∞ is contractible, then (A\A∞)/Mod(g, 1) has the rational coho-
mology of Mod(g, 1).

– The dimensions of A\A∞ and Tg,1 are both 6g − 4.

Corollary 1.27. Mod(g, 1) ∼= (A\A∞)/Mod(g, 1).

Definition 1.28. The dual complex to A\A∞, denoted Y , has a 6g − 3 − n-cell for each
filling collection {α1, . . . , αn} ⋄

Fact 1.29 (Corollary of Theorem 1.26). Y is also contractible, and has dimension 4g − 3.
But Mod(g, 1) still acts on Y with finite stabilizers, so H∗(Mg,1,Q) ∼= H∗(Y/Mod(g, 1),Q),
and hence the cohomology vanishes above degree 4g − 3.

Example 1.30. Let g = 1: S = C/Z[i], and p = 0. Consider the curves a given by the line
joining 0 and 1, b given by joining 0 and i, and c given by joining 0 and 1 + i. The curves
{a, b, c} define a 0-cell in Y . The curves {a, b} are still filling, which means it defines a 1-cell.
On the other hand, {a} is not filling. In fact, 2 or more curves will always fill.

What does Y/Mod(1, 1) look like? It has one 0-cell, with stabilizer of order 6, and one
1-cell, with stabilizer of order 4†. This gives us the orbifold Euler characteristic ofM1,1.

χorb(M1,1) =
1

6
− 1

4
= ζ(−1)

⋄

Harer-Zagier repeated this computation for arbitrary genus, using the following corre-
spondence.

Filling collections of n-curves in Sg ←→ ways of quotienting a 2n-gon to get Sg

The quantity on the right hand side was what Harer and Zagier actually computed.

1.6.4 The first step towards Mumford’s conjecture

Harer used various simplicial complexes with actions of Mod(g) to prove the following theo-
rems.

Theorem 1.31 (Harer stability [Har85]). Consider the following homomorphisms.

(a) Modm+1
g,n → Modm+2

g,n

†This is not too hard to see if one knows Mod(1, 1) ∼= SL(2,Z).
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(b) Modm+2
g,n → Modm+1

g+1,n

(c) Modm+2
g,n → Modmg+1,n

The maps all induce isomorphisms on Hd(·,Q) for d ≤ 2g
3 + c.

The homomorphism (a) is obtained by gluing in a pair of pants along a boundary com-
ponent. The homomorphism (b) is obtained by gluing in a single pair of pants along two
boundary components, using two of the cuffs. The homomorphism (c) is obtained by gluing
in a cylinder in a similar manner.

1.6.5 Summary of what we know about H∗(Mg,Q)

We know the following facts about Hd(Mg,Q) (or the subring RHd(MgQ)).

– d > 4g− 6: Both the cohomology and the tautological subring vanish beyond degree d.

– d > 2g − 4: The tautological ring vanishes in this degree.

– d < 2g
3 : The tautological ring behaves like a polynomial ring generated by κi. The

same holds for the cohomology ring.

– 2g
3 < d < g: The relations between κi are well understood conjectures.

– χ(Mg): We know the Euler characteristic, which means we know a lot of cohomology
classes don’t vanish in the intermediate region.

2 Mg via algebraic geometry

Advantages of working with algebraic curves

– It’s easier to construct/study specific curves of families of curves.

– We have a nice compactificationMg that is natural in some sense.

– Can work over fields (or rings) other than C.

Disadvantages of working with algebraic curves

– More technical if we want to state precise results or prove things.

– Some topological ideas don’t translate nicely to algebraic geometry. In particular,
boundary components of curves don’t translate. Neither does the mapping class group.

2.1 The algebro-geometric description of Mg

Definition 2.1. Mg is the moduli space of algebraic varieties over C that are proper, di-
mension 1, connected , non-singular, and genus g. ⋄

Here’s a quick summary of some of the terms in the definition.

– Algebraic variety over C: A complex variety obtained by gluing together affine varieties.
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– Affine variety: It is the vanishing locus in Cn of an ideal in C[x1, . . . , xn].

– Projective variety: The vanishing locus in CPn of a homogeneous ideal in C[x1, . . . , xn+1].

– Proper: This corresponds to the topological notion of compactness. A curve is proper
iff it is projective.

The genus of a curve can be defined in two different ways.

Definition 2.2 (Arithmetic genus). Given a curve C, consider its sheaf of regular function
OC , and then define g by 1− χ(C,OC)

∗. ⋄

Definition 2.3 (Geometric genus). Consider the cotangent line bundle T ∗C. The space of
regular sections is a finite dimensional vector space. We define the genus to be the dimension
of the space of regular sections. ⋄

Fact 2.4. For smooth projective curves, the arithmetic and the geometric genus agree.

Example 2.5 (Plane curves). Consider a homogeneous polynomial f of degree d in C[x, y, z].
The corresponding projective curve C in CP2. Generically, C is non-singular, i.e. for a dense
subset of polynomials, C is non-singular. In this case, C will be a non-singular connected
projective curve of genus (d−1)(d−2)

2 .

To be more specific, C is non-singular iff the vanishing locus of ∂f
∂x ,

∂f
∂y , and

∂f
∂z is empty.

This is a condition that can be checked purely algebraically, and in doing so, one sees that
this is a generic condition. ⋄

A family of homogeneous polynomials {ft} (where t is a complex parameter) gives rise to
a family of plane curves.

Example 2.6 (Family of curves).

ft = y2z − x3 − xz2 − tz3

This is a family of cubic curves parameterized by t ∈ C.

Figure 4: The real part of the cubic curves in the affine chart z = 1 as t ranges in R.

We expect that for most values of t, the associated curve is non-singular and thus describes
a path inMg. ⋄

∗This Euler characteristic comes from the sheaf cohomology.
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When we describe the compactification of Mg, we’ll be adding in some singular curves
to fill in the “gaps” in some of these families. We need to be a little careful in what sort of
singular curves we fill in though. Here’s an example of something that can go wrong.

Example 2.7. Consider the family ft.

ft = y2z − x3 − tz3

By an appropriate change of variables, it’s not too hard to see that V (ft) ∼= V (ft′) for
t ̸= 0 ̸= t′. On the other hand, V (f0) is a singular curve with a cusp. We thus have a family
that’s one curve for all t ̸= 0, and then when t = 0, it suddenly jumps to a singular curve.
That means a moduli space can’t contain both V (f1) and V (f0). ⋄

Figure 5: A family of smooth curves deforming to a singular curve.

Non-singular plane curves only give examples of curves with genus equal to the triangular
numbers. Also, for g ≥ 3, not all curves are smooth plane curves. In general, we will want to
think of curves as living inside some CPn, and note that the same curve can embed in CPn in
lots of different ways. For instance, any smooth degree 2 curve in CP2 is isomorphic to CP1.

Exercise 2.1. Prove that any smooth degree 2 curve in CP2 is isomorphic to CP1

That means to constructMg, we’ll want to choose a canonical embedding of each curve
C†. For plane curves, we have another way of dealing with the singularities.

Theorem 2.8. Let C be a curve over C. Then there is a unique non-singular projective
curve C ′ such that C and C ′ are isomorphic after removing finitely many points from each,
i.e. C and C ′ are birational.

Example 2.9. Here are some example of Theorem 2.8 in practice.

– Let C be equal to C1. Then C ′ is CP1. This is in some sense a compactification.

– Let C = V (xy) ⊂ CP2. This is a singular curve with a singularity at [0 : 0 : 1].
The corresponding curve C ′ is the union of two copies of C1. This is what is called
normalization.

†On a side note, any smooth curve embeds in CP3, but this isn’t actually very useful, since we may need
a lot of equations to cut out a given curve.
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– Let C be V (y2 − f(x)) ⊂ C2 for some square-free polynomial f ∈ C[x] of degree
2g + 2. The theorem then tells us that there is some non-singular projective curve C ′,
which resolves the singularity at ∞ of V (y2z2g − z2g+2f

(
x
z

)
) ⊂ CP2. In fact, C ′ is the

hyperelliptic curve ramified over the roots of f , and has genus g.

⋄

Remark 2.10. Singularities “use up” a lot of genus. Normalization therefore reduces genus,
sometimes significantly. ⋄

2.1.1 Description of all low genus curves

The two constructions, i.e. smooth plane curves and double covers of CP1, suffice to describe
all curves of genus less than or equal to 3.

– g = 0: We just have CP1. This can be thought of as a double cover of CP1, ramified at
2 points, where the covering map is given by [x0 : x1] 7→ [x20 : x

2
1].

– g = 1: Every curve is simultaneously a cubic plane curve, and a double cover of CP1

ramified at 4 points. Neither representation is unique, unless we mark a point of C.

– g = 2: Every curve is hyperelliptic (and in a unique way), i.e. there is a unique 2-
to-1 map C → CP1 (up to Möbius transformations), ramified at 6 points. This lets
us compute the dimension ofM2. We have a 6-dimensional space given by the choice
of ramification point on CP1, and our choice is unique up to Möbius transformations,
which is 3-dimensional, which meansM2 must have dimension 6− 3.

– g = 3: Each curve is either a degree 4 smooth plane curve or hyperelliptic, but not
both. This is interesting, since it is known that Mg is irreducible, which means one
of these families must be contained in the closure of the other. To figure out which of
these families is the dense sub-variety, we can compute dimensions. The dense subset
should have the same dimension. Just like in the previous case, we can compute the
dimension of the hyperelliptic curves, which turns out to be 8−3 = 5. This means that
the hyperelliptic curves cannot be dense.

To compute the dimension of quartic curves, we need to compute the dimension of
degree 4 polynomials in x0, x1, and x2, which turns out to be 15. A generic quartic
is smooth, which means the smooth quartics have dimension 15. We then subtract
1 to account for scaling. We then need to account for the automorphisms of CP2,
which is PGL(3), which has dimension 8. That results in the dimension being exactly
15− 1− 8 = 6.

We expect families of non-singular plane quartics with limits that are hyperelliptic.
SinceM3 is not proper, we also expect some families of smooth plane quartics with no
smooth limit.

Remark 2.11. Any smooth genus g curve C comes with a canonical map C → CPg−1. This
map is an embedding if C is not hyperelliptic, otherwise it’s a 2-to-1 map to an embedded
CP1 ↪→ CPg−1. For g = 3, this embedded CP1 in CP2 is given by a conic, i.e. V (g), where
degree of g is 2. ⋄



17

Example 2.12 (Pencil of conics). Suppose f ∈ C[x0, x1, x2] is homogeneous of degree 4 and
suppose g ∈ C[x0, x1, x2] is homogeneous of degree 2, such that V (f) and V (g) are non-
singular, and V (f) ∩ V (g) is 8 points.

Now let ht = g2+ tf be a family of degree 4 polynomials. Then V (ht) is a smooth quartic
for all but finitely many t, while V (h0) is just the conic V (g) (with multiplicity 2). ⋄

Claim 2.13. The family of genus 3 curves V (ht) has limit at t = 0 equal to the hyperelliptic
curve given by a double cover of V (g) ramified over the 8 intersection points. ⋄

We could try in a similar manner to write down descriptions of higher genus curves. For
instance, if g = 4, either C is hyperelliptic or C is the intersection in CP3 of a quadric
equation and a cubic surface.

2.1.2 Where do the descriptions come from?

Theorem 2.14. Algebraic morphisms C → CPn correspond to the data of a basepoint free
collection (i.e. without a common zero) of n sections of a line bundle L over C, up to
isomorphisms of L.

This means we can classify curves if we can choose line bundles L and sections (s0, . . . , sn),
and then understand the resulting map to CPn.

What are options for L? We could start with the trivial line bundle, but that’s bad
because the only sections are constant. If our curve C had a marked point p, we could
try using p to define some line bundle OC(k · p). Informally, the sections are meromorphic
functions allowed to have at most a pole of order at most k at p.

Suppose we really just want to construct Mg, not Mg,1. Without a marked point, the
only real option is to use a power of the (co)tangent bundle. Suppose g ≥ 2, then we already
know that the space of sections of the cotangent bundle KC (also referred to by ωC , ΩC , or
T ∗C) has dimension g. We can try to take any g linearly independent sections of KC .

Claim 2.15. This defines a morphism C → CPg−1 well defined up to Aut(CPg−1). ⋄

Sketch of proof. Use Riemann-Roch to compute the following.

H0 (C,KC(−p)) = g − 1

This canonical map is responsible for the classification of curves with g ∈ {2, 3, 4}.

Exercise 2.2. The canonical map is an embedding iff C is not hyperelliptic. Hint: Use
Riemann-Roch.

We want to use something like the canonical map to give parametrizations ofMg in terms
of equations cutting out curves in CPn. One issue visible in g = 3: we don’t want to break
up our moduli space into pieces before we’ve even constructed it.
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Outline of the algebraic construction of Mg

Step 1: Use some multiple of KC , not KC itself. This makes sure we always have an embed-
ding.

|nKC | : C ↪→ CP(2n−1)(g−1)−1

It turns out that for n = 3, this is an embedding for all values of g.

Step 2: Construct a moduli space of embedded curves in CPN (where N = (2n−1)(g−1)−1).
This is a special case of a “Hilbert scheme”.

Step 3: Interpret the “canonically embedded” curves from Step 1 as some nice subspace of
some Hilbert scheme. Specifically, our moduli space will be an open subset of a closed
subset of the Hilbert scheme.

Step 4: Quotient out by PGLN+1 because the canonical embedding was only defined up to a
choice of basis. We need to work extra hard to impose an algebraic structure on the
quotient (geometric invariant theory).

Results from this construction

– Mg turns out to be an irreducible quasi-projective variety.

– A compactification Mg naturally arises from using a slightly larger subspace of the
Hilbert scheme. It turns out thatMg is a projective variety.

2.1.3 Hilbert polynomials and Hilbert schemes

Definition 2.16. Let k be any field and suppose I ⊆ k[x0, . . . , xn] is a homogeneous ideal.
Let f : Z≥0 → Z≥0 be defined by the ranks of the graded pieces of k[x0, . . . , xn]/I.

f(m) := dimk (k[x0, . . . , xn]/I)degm

Then f agrees with some polynomial P for large enough values of m. This polynomial P is
the Hilbert polynomial of the ideal I (or equivalently the quotient). For an embedded curve
X, we shall denote its Hilbert polynomial by PX . ⋄

Exercise 2.3. Show that a Hilbert polynomial is actually well defined, i.e. the function f
does agree with some polynomial for large enough m.

Hilbert polynomials give us a way of distinguishing between different embeddings of the
same curve.

Example 2.17. V (y) ⊂ CP2 has Hilbert polynomial m+ 1, while V (x2 + y2 − z2) ⊂ CP2 is
an isomorphic curve with a different Hilbert polynomial, i.e. 2m+ 1. ⋄

Hilbert polynomials is constant in nice families, e.g. plane curves of degree d. Hilbert
polynomials behave like Euler characteristic in the following sense.

PX∪Y = PX + PY − PX∩Y
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Facts about Hilbert polynomials

– degPX(m) = dim(X).

– The leading term of PX(m) is d·ms

s! , and s = dimX and d is the degree of the embedding.

– PX(0) = 1− g, where g is the arithmetic genus of X.

Definition 2.18 (Hilbert scheme). Fix CPN , and fix an integer valued polynomial P : Z≥0 →
Z with positive leading coefficient. Then points in Hilbert scheme HilbP (CPn) correspond to
closed subschemes of CPN with Hilbert polynomial P . ⋄

Examples of Hilbert schemes

(i) If P = 0, then Hilb0(CPn) only contains only one point, which is the empty variety.

(ii) If P = 1, then it must be the Hilbert polynomial of some point in CPn, which means
Hilb1(CPn) must be canonically isomorphic to CPn.

(iii) Let P = d ∈ N: we consider HilbP (CP1). The points in this Hilbert scheme correspond
to ideals (f) in C[x0, x1], where f has degree d, so Hilbd(CP1) = CPd. Alternatively,
one can look at the roots of f to interpret this as the configuration space of d unordered
points in CP1 that are allowed to collide.

(iv) Let P = 2: we consider Hilb2(CPn). The Hilbert scheme is still a configuration space
of two unordered points in CPn, but when the points collide, we need to remember a
tangent direction. Geometrically, this is the blow-up of CPn×CPn along the diagonal‡.

(v) Let P = d ∈ N: we consider Hilbd(CPn). This is the same as before, but we need to
remember more information when three or more points come together.

(vi) When P =
(
m+2
2

)
−

(
m+2−d

2

)
= dm + 1 −

(
d−1
2

)
, HilbP (CP2) consists just of degree d

plane curves (which may not be smooth). We thus have HilbP (CP2) ∼= CP(
d+2
2 )−1.

(vii) When P = dm+ 1−
(
d+1
2

)
+ k, where k ∈ Z. Then if k < 0, then HilbP (CP2) is empty.

If k > 0, HilbP (CP2), we get “degree d plane curves with k extra points”. Loosely

speaking, HilbP (CP2) should be a fiber bundle over CP(
d+2
2 )−1 with fiber Hilbk(CP2).

Things get complicated when the extra points collide over the plane curve in the base.

(viii) Most cases with linear P and n > 3 (i.e. HilbP (CPn)) are very complicated, with
many different irreducible components, and arbitrarily bad singularities. For instance,
if P = 3m + 1, then HilbP (CP3) parameterizes genus 0 curves embedded in CP3 by a
degree 3 map. One curve living in this Hilbert scheme is the rational normal curve given
by the map [t : u] 7→ [t3 : t2u : tu2 : u3]. But such curves are not the only points in
HilbP (CP3). There’s another component of the Hilbert scheme. Consider a cubic curve
in CP2, which is embedded inside CP3 as a hyperplane, and add an additional point
anywhere. This is representative of a more general phenomenon: the Hilbert scheme of
the Hilbert polynomial of a smooth curve will have many high dimensional components
coming from disconnected curves.

‡Look up punctual Hilbert schemes for more information about these constructions.
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Unfortunately, we are in the setting of the last case. Recall that we wanted to use an
n-canonical embedding of C to get points in Hilb2n(g−1)m+1−g(CP(2n−1)(g−1)−1). On the other
hand, we really just need a locus inside the full Hilbert scheme, which means our task may
not be as hard as we imagined.

2.1.4 Construction of Mg

Our first step will be to construct Hilbert schemes. To do that we need a somewhat difficult
commutative algebra statement.

Lemma 2.19. For every n and P , there exists m0 (depending on n and P ) such that if X ⊆
CPn has Hilbert polynomial P , then the corresponding homogeneous ideal I ⊂ C[x0, . . . , xn]
satisfies the following conditions.

(i) I≥m0 is generated by Im0.

(ii) dimC (C[x0, . . . , xn]/I)m = P (m) for m ≥ m0.

Given this lemma, HilbP (CPn) can be constructed as a closed subset of the Grassman-
nian Gr

(
C[x0, . . . , xn]m0 ,

(
m0+n

n

)
− P (m0)

)
via Im0 . The subset is a closed subset because

condition (ii) of Lemma 2.19 are given by vanishing of determinants of minors.

Remark 2.20. The action of PGLn+1 on HilbP (CPn) is visible explicitly in the construction,
since PGLn+1 acts on C[x0, . . . , xn] (in all degrees). This gives an action on the Grassman-
nian, which comes from a representation on a larger projective space in which the Grassman-
nian embeds via the Plücker coordinates. ⋄

This concludes Step 2 of the algebraic construction ofMg: this was the construction of
the moduli space of embedded curves in CPn via Hilbert schemes. The next step would be
to identify the “canonically embedded” (i.e. the embedding given by a large multiple of KC)
curves as a nice subset of the Hilbert scheme. We will skip this step for the moment, and
proceed to Step 4, which was to quotient out the action of PGLn+1 in a reasonable manner.
Constructing quotients of algebraic varieties/schemes is the subject of Geometric Invariant
Theory, which is what we’ll segue into right now.

Geometric Invariant Theory Given a group G acting on an algebraic variety X in a
reasonable manner (i.e. continuously, algebraically or any other desired adjective), we would
like X/G to be a reasonable algebraic variety. In the case of affine or projective varieties,
the quotient should correspond to the ring of G-invariant coordinate functions on X. If we
denote the ring of coordinate functions by A, the G-invariant subring is denoted by AG. This
approach has a few issues.

(i) In practice, it’s very difficult to compute AG ⊆ A.

(ii) Spec(AG) will not usually agree with the topological quotient X/G. For this reason,
we’ll denote Spec(AG) by X//G.
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Geometric Invariant Theory gives us a geometric description of X//G. Concretely, it gives
us an open subset XSS ⊂ X of “semistable points” and a surjection XSS ↠ X//G that is a
categorical quotient, and under appropriate conditions, also a topological quotient.

This can be done concretely for the setup we’re interested in. Let X be CPn, and G be
a reductive group (e.g. GL, PGL, or SL). Consider a linear action of G on Cn+1, and the
induced action on X. The quotient X//G by definition is the Proj of the invariant subring,
i.e. C[x0, . . . , xn]G.

X//G := Proj
(
C[x0, . . . , xn]G

)
Definition 2.21 (Semistable and stable points). A non-zero point x ∈ Cn+1 is

– semistable if the closure of G-orbit of x does not contain 0.

– stable if the G-orbit of x is closed and its stabilizer is finite.

A point x ∈ CPn is semistable or stable if any lift of x in Cn+1 is. ⋄

We shall denote the locus of semistable points in CPn by (CPn)SS and the locus of stable
points by (CPn)S . If X ⊆ CPn is left invariant by G, then the restriction of the semistable
locus and stable locus to X will be denoted by XSS and XS respectively.

Example 2.22 (GIT quotients). Consider the following two examples of GIT quotients.

(i) Let G = GL1 = C∗ and consider the following action on C2.

g · (x, y) := (gx, g−1y)

The induced action on CP1 is given by a similar formula.

g · [x : y] := [gx : g−1y]

Observe that the action on CP1 has three orbits, i.e. [1 : 0] and [0 : 1] are fixed, and
every other point is in the same orbit. The topological quotient therefore consists of 3
points, and the images of the two fixed points are “generic” points in an informal sense.

To construct the GIT quotient, we first need to understand the invariant subring
C[x, y]G. The subring is generated by xy, i.e. C[x, y]G = C[xy] ⊂ C[x, y]. The Proj of
this ring this ring is just a single point.

Also note that CP1 \ {[0 : 1], [1 : 0]} is the semistable and stable locus of the group
action. The lift of any point in this set is of the form (x0, y0), where x0 ̸= 0 ̸= y0. The
G-orbit of such a point is closed (because it’s given by the vanishing of xy = x0y0), and
the stabilizer is finite, since it just consists of 1 and −1. Thus the semistable locus can
be canonically identified with C∗ and taking the categorical quotient of that with C∗,
we get a point, which agrees with our earlier GIT quotient.

(ii) Consider now the following action on C2 by the same group.

g · (x, y) := (g2x, y)
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This induces the same action on CP1, but now the semistable and stable locus are
different. The stable locus is empty because no orbit is a closed subset of C2, and the
semistable locus is CP1 \ {[1 : 0]}. The categorical quotient is (CP1)SS by C∗ is still a
point, but one has to work harder to see that.

The invariant subring for this action is C[y], whose Proj is still a point, so that agrees
with the earlier computation.

⋄

The following theorem tells us that GIT quotients are nice as algebraic varieties.

Theorem 2.23 (GIT quotients are projective). Let Xs ⊆ XSS ⊆ X = CPn be open subsets.
Then there exists a categorical quotient XSS/G which is projective.

In general, one can deduce facts about X//G from the stable and semistable locus. For
instance, points in different G-orbits of XS are sent to different points in X//G, i.e. XS →
XS/G is a topological quotient. Two points in XSS get sent to the same point in X//G iff
the corresponding orbit closures intersect in CPn. If XSS = XS , then the GIT quotient is the
usual quotient, and is projective. These facts suggest that it might be useful to know whether
a point is semistable. To that end, we have the Hilbert-Mumford criterion for semistability.

Theorem 2.24 (Hilbert-Mumford criterion for semistability). Let G be a reductive group
acting linearly on Cn+1 and CPn. A point x ∈ CPn is semistable with respect to this action
if it’s semistable with respect to all 1-parameter subgroup actions of G.

We can now come back to the quotient we actually care about. We have an action of
SLN+1 on n-canonically embedded smooth curves of genus g. We have the following theorem
that tells us that things are as good as we’d like them to be.

Theorem 2.25 (Gieseker). One can describe the stable and semistable locus in HilbP (CPn)
with respect to the SLN+1 action.

(1) n-canonically embedded smooth curves are GIT-stable with respect to this setup for n ≥ 3
and m0 ≫ 0 (see Lemma 2.19 for a description of m0). This yields a construction of
Mg.

(2) For a large enough m0, the semistable locus is the same as the stable locus, and can be
described in terms of geometry of curves. This yields a construction ofMg.

Definition 2.26 (Stable curves). A stable curve of genus g is an algebraic curve C of arith-
metic genus g with two stability conditions.

(1) Locally at any point C is smooth, i.e. the vanishing locus of y = 0 in C[x, y], or has a
simple node, i.e. the vanishing locus of xy = 0 in C[x, y].

(2) |Aut(C)| <∞, i.e. at least 3 points are marked in each CP1.

We denote the space of stable genus g curves byMg. ⋄

Exercise 2.4. The space of (possibly singular) plane cubics is CP9. There’s an action of
SL3 on this space that comes from an action on C10. What curves are GIT semistable with
respect to this action?

One can constructMg,n andMg,n in a similar manner.
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{n-canonically embedded smooth genus g curves} HilbP (CPn)

{n-canonically embedded stable genus g curves} HilbP (CPn)S

HilbP (CPn)SS

Figure 6: A description of how how the stable and semistable locus fit with smooth and
stable curves.

2.2 The Deligne-Mumford compactification

2.2.1 The algebraic and topological pictures

The Deligne-Mumford compactification is the space Mg,n, i.e. the moduli space of stable
curves. This notion of stability comes from GIT, and has two aspects.

(1) No “bad” singularities, i.e. we only allow singularities that locally look like xy = 0, but
not cusp singularities or non-transverse self intersections. Furthermore, we also require
the marked points be non-singular.

(2) No infinite automorphism groups. For [C; p1, . . . , pn] ∈ Mg,n, the automorphism group
is finite iff 2g − 2 + n > 0.

What do the stable curves look like? A stable curve may have multiple irreducible
components of different genera, glued together along nodal singularities. Topologically, the
picture looks like some simple closed curves were shrunk to a single point. If we think of a
stable curve C as formed by gluing a bunch of non-singular Ci together at pairs of marked
points, then C iff Ci have finite automorphism groups which happens only if 2gi−2+ni > 0.
In practice this means that every genus 3 surface needs at least 3 “special points”, i.e. marked
points or nodes.

It’s not quite clear in the preceding discussion what the genus of a singular curve is.

Nodal singularity

Figure 7: A stable curve of genus 2 inM2.
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Definition 2.27 (Arithmetic genus of a stable curve). The arithmetic genus of a stable curve
is 1− c, where c is the constant term in the Hilbert polynomial. By additivity of the Hilbert
polynomial, we can express the genus in terms of the genera of the irreducible pieces.

g =
∑

gi + ((# of nodes)− (# of irreducible components) + 1)

⋄

There is a more geometric way of defining the genus of a stable curve. Recall that the
space of holomorphic 1-forms on a compact Riemann surface is Cg.

Fact 2.28. If C is a stable curve of genus g, then the space of meromorphic 1-forms on C
with simple poles allowed at the two sides of each node, and opposite residues there is Cg

(see Figure 8).

Genus 0
component

Genus 2
component

Genus 2
component

Figure 8: An example of a stable curve with 3 irreducible components.

This defines the geometric genus of a stable curve.

2.2.2 The Teichmüller theoretic picture

Consider the points inM3 which topologically look like the wedge sum of a genus 2 surface
and a genus 1 surface. This ought to beM2,1×M1,1, and we’ll see that it is indeed the case.
To do so, we’ll need the notion of an augmented Teichmüller space

Definition 2.29 (Marked stable curve). Let S be a fixed topological surface. A marked
stable curve is a pair (X,ϕ : S → X) such that X is a stable curve of genus g = g(S) and ϕ
is a continuous surjection that induces the following homeomorphism.

ϕ̃ : S/Γ→ X

Here, S/Γ is given by contracting a disjoint set of closed curves. We consider two marked
stable curves the same if ϕ1 and ϕ2 are the same up to composition by null-isotopic self
homeomorphism of S. We denote this space by T̃g. ⋄

Mod(g) acts on T̃g and the quotient is Mg as a set. What we need now is a reasonable

topology on T̃g.
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What does a small neighbourhood of (X,ϕ) look like? Points (X ′, ϕ′) close to
(X,ϕ) should have Γ′ isotopic to a subset of Γ. Morally, this means that we replace some
nodes with very short geodesics. Furthermore, we also require ϕ and ϕ′ be really close in
the sense of the Teichmüller metric (on the complement of the nodes), i.e. the things with
quasiconformal distortions.

Digression 2.30. Smoothing a node in algebraic geometry looks like changing xy = 0 to
xy = c, where c ̸= 0. Thus varying c gives us a 1-parameter family going off to ∞ inMg. ⋄

Fact 2.31. The augmented Teichmüller space Tg is not compact. One way to see this is to
observe that the orbit of a Dehn twist has no accumulation point.

2.2.3 Examples of compactified moduli spaces

(1) M0,4: Consider the compactification M0,4. The regular moduli space can be identified
as an open subset of CP1.

M0,4
∼= CP1 \ {0, 1,∞}

It turns out thatMg,n is a compact complex orbifold of dimension 3g−3+n. We therefore
expect M0,4 to be CP1. We can now ask what are the stable curves corresponding to
CP1 \M0,4. The three stable curves are gotten gluing together two genus 0 curves along
a node. There are 3 choices for partitioning the marked points into pairs, which give us
the three missing points of the compactification.

More concretely, we could keep the first three marked points fixed at 0, 1, and ∞, and
send off the fourth marked point to ∞. That results in the configuration where 0 and 1
are in one irreducible piece, and ∞ and the fourth marked point are in one irreducible
component.

0

1 ∞

b

0

1

∞

b

n

Figure 9: Two marked points converging to each other in M0,4 splits the curve into two
irreducible components intersecting at the node n.

(2) M1,1: This moduli space can be identified with C (or CP1 \{1 point}), along with some
orbifold structure. There are a couple of ways of seeing this.
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j-invariant Elliptic curves have a j-invariant, which is a bijection between elliptic curves
and complex numbers. One way of defining the j-invariant is by writing down the
elliptic curve E in Weierstrass form.

E = V (x3 + ax+ b)

Then the j-invariant of E is given by the following formula.

j(E) = 1728
4a3

4a3 + 27b2

It’s a theorem that for any two elliptic curves defined over C, they are isomorphic
iff their j invariants match.

Moduli of complex tori The spaceM1,1 is T1,1/Mod(1, 1). The Teicmüller space may
be identified with the upper half plane H2, and Mod(1, 1) is just SL2(Z). The
fundamental domain of this group action shows whatM1,1 looks like topologically
(see Figure 10). One can see that this is homeomorphic to C.

Figure 10: The fundamental domain for the SL2(Z) action on H2.

Hyperelliptic involution One can also use the hyperelliptic involution to get an iso-
morphism from M1,1 and M0,4. To see this concretely, consider an hyperelliptic
involution that fixes the marked point. The quotient is CP1 with 4 ramification
points. This construction sends an element ofM1,1 to multiple points inM0,4, but
all of those points lie in an S4 orbit, hence the isomorphism with the quotient.

In any case, we expectM1,1 to be isomorphic to CP1. The stable curve in the compact-
ification is a curve obtained by shrinking a loop on the torus. Algebraically, it’s easy to
see why there can only be one stable curve: essentially because we’re only allowed one
singularity, and that singularity needs to look locally like xy = 0 (See Figure 11).

(3) M0,5: This moduli space can be identified with an open subset of C2.

M0,5 =
{
(x, y) ∈ C2 | x ̸= y, x ̸∈ {0, 1}, y ̸∈ {0, 1}

}
One may mistakenly believe that the compactification here is CP2. This is because the
action of S5 does not extend to a nice automorphism of CP2.

To understand whatM0,5 \M0,5 looks like, observe that there are two kinds of points.
One kind of point corresponds to a stable curve with two irreducible components: one of
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Figure 11: The stable curve inM1,1.

the components has 3 out of the 5 marked points, and the other component has 2 marked
points. They both also have an additional marked point p and p′, along which they are
glued. For the irreducible component with 2 of the 5 marked points (along with a third
point of gluing), we have an M0,3 worth of complex structures, i.e. just one structure.
On the other hand the irreducible component with 3 of the 5 marked points has anM0,4

worth of complex structures. Thus for each (3, 2) splitting of the 5 marked points, we get
a copy of M0,4: there are 10 such splittings. Furthermore, each irreducible component
containing 3 of the 5 marked points can further break up into two irreducible pieces, like
points in the compactification ofM0,4, so we really get 10 copies ofM0,5 = CP1 in the
compactification. Of course, these lines are not disjoint, since there may be multiple ways
of splitting these curves up. If one works out what the intersections should look like, one
gets that they must intersect at 15 points. We thus have the following crude description
of the stable points inM0,5.

M0,5 \M0,5 = 10 lines intersecting in 15 points

One can refine the above description using the language of blowups.

M0,5
∼= CP2 blown up at 4 points

(4) M2: This can get rather complicated. The natural first step is to try to draw the
topological pictures of the points [C] ∈ M2. Recall that such a curve C is obtained
by shrinking curves. We can now shrink a second curve. On the stable curve where we
shrunk a separating curve, we only have one choice. On the stable curve, where we shrunk
a non-separating curve, we again have two choices, and then we do a similar thing for the
third curve. We end up with 7 topological types of stable curves, as seen in Figure 12.
These topological pictures correspond to subspaces ofM2 of different dimensions. This
is what’s known as the “boundary stratification” of M2. One can also draw the same
stratification, but with the algebraic picture instead.
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Shrinking along
blue curveShrinking along

red curve

Shrinking along
blue curve

Shrinking along
red curve

Shrinking along
blue curve

Shrinking along

blue curve

Shrinking along
red curve

Figure 12: The two topological kinds of stable curves obtained by shrinking one curve.
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2.2.4 Dual graph to a nodal curve

Given a nodal curve C, we construct its dual graph in the following manner (see Figure 13
for an example).

– We add a vertex for every irreducible component of C. We also mark that vertex with
the genus of the irreducible component.

– We add an edge (or a self loop), for each node, which connects vertices corresponding
to the irreducible component(s) intersecting at the node.

– We add a “half-edge”, or a “leg”, for each marked point.

A

B

C

D

3

1

2

Dualizing

A

B

2

C

D
1

3

Figure 13: An example of a stable curve and its dual graph
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The poset of boundary stratification of M2 gives us a corresponding poset of dual graphs
(See Figure 14).

2

1 1
1

1 0

0

0 0

0 0

Figure 14: The poset of dual graphs of the strata inM2.

Definition 2.32. A stable graph of genus g with n legs is the dual graph of some [C] ∈
Mg.n. ⋄

Definition 2.33 (Alternative definition). A stable graph of genus g with n legs is a graph Γ
with n legs labelled {1, . . . , n} and a genus function G : V (Γ)→ Z≥0 satisfying the following
conditions.

(a) Γ is connected.

(b) 2G(v)− 2 + nv > 0 for each v ∈ V (Γ), where nv is the valence of v.

(c) g =
(∑

v∈V (Γ)G(v)
)
+ h1(Γ), where h1 is the first Betti number.

⋄

Fact 2.34. There are only finitely many stable graphs for a given g and n.

2.2.5 Gluing maps and stabilization

Given two marked surfaces, we can glue together two marked points to get a stable curve with
a node at the gluing point. Alternatively, we can glue two marked points on a surface together.
The first construction gives us a map on moduli space: Mg1,n1+1×Mg2,n2+1 →Mg1+g2,n1+n2 .
Similarly, the second construction gives us a mapMg,n+2 →Mg+1,n.
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We can also compose several gluing maps together. Such compositions are called gener-
alized gluing maps. The data describing a generalized gluing map is the same as the data of
stable graph Γ. Given a stable graph Γ, there’s a corresponding map.

ξΓ :
∏

v∈V (Γ)

Mgv ,nv →Mg,n

We can describe the image of the smooth curves under ξΓ. That image turns out to be
precisely the stable curves of type Γ.

Remark 2.35. ξΓ |∏Mgv,nv
is not an isomorphism. This map is not an isomorphism because

the graph Γ may have automorphisms. The quotient by Aut(Γ) does give us an automorphism
though. ⋄

One takeaway from this is that we can decompose the strata as products of lower dimen-
sional moduli spaces, by studying the stable graphs.

Definition 2.36. A prestable curve (of genus g with n marked points) is the same as a stable
curve, without the condition that their automorphism group be finite. ⋄

Lemma 2.37 (Stabilization). Let (C, p1, . . . , pn) be a prestable curve of genus g. Suppose
2g − 2 + n > 0. Then there is a unique way of contracting some number of irreducible
components of C that yields a stable curve of genus g.

Definition 2.38. The forgetful map π : Mg,n+1 → Mg,n is defined by forgetting the last
marked point, and stabilizing the resulting prestable curve. ⋄

Recall that Mg,1 → Mg was the universal curve over Mg, and was an orbifold fiber
bundle. We can check that the forgetful map π is the universal curve in the same sense.

2.2.6 Describing elements of H2(M0,n)

Describing the ψ classes

Fact 2.39. One can pullback the ψ-classes along this forgetful map π.

π∗ψ1 = ψ1 − [Poincaré dual to a boundary stratum]

This calculation can be done explicitly.

It will be convenient to have notation for the Poincaré dual of a boundary stratum re-
sulting from this operation.

Definition 2.40. If S ⊆ {1, . . . , n}, then we define ∆S to be the Poincaré dual to the
boundary stratum with two irreducible components, where S is the collection of marked
points on one of the components. ⋄

With this notation, pulling back ψ1 along π gives ψ1 −∆{1,n+1}. Recall that we’re doing

all this to understand H2(M0,n). To this end, we make the following claim.

Claim 2.41. H2(M0,n) is generated by the ∆S classes. ⋄
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Let’s consider the claim in the case ofM0,3. This is the same as H2({∗}). In this case,
ψ1 is just 0. We can now pull this back along the map π. This gives us that π∗ψ1 = 0 in
H2(M0,4). But that means ψ1 = ∆{1n} for n ∈ {2, 3, 4}.

We can now try to express ψ1 ∈ H2(M0,5) as a linear combination of ∆S .

0 = π∗(ψ1 −∆14)

= ψ1 −∆15 − π∗∆14

We need to understand what the pullbacks of ∆S look like. This should essentially be the
Poincaré dual of π−1(∆14). That amounts to essentially adding a fifth marked point on the
stable curve, which can be done in 2 ways. Therefore the pullback is ∆145 + ∆14. We can
essentially iterate this process. We have an explicit description.

ψ1 =
∑

S⊂{1,...,n}
1∈S
2,3̸∈S
|S|≥2

∆S

It’s a harder fact that formulas of this type generate all relations between ∆S inH2(M0,n).

Describing the κ1 class We can use similar techniques to get a description of the κ1
classes. The only thing we’ll need to explicitly work out is what π∗κ1 is. Recall that κ1 −
π∗(ψ

2
n+1). We need to pull this back along the pushforward. However, the pullback and the

pushforward commute, so we can swap the order.

π∗κ1 = π∗π
∗(ψ2

n+1)

= π∗
(
ψn+1 −∆{n+1,n+2}

)2
Fact 2.42. Following the above calculation through gives us the following.

π∗κi = κi − ψi
n+1
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A List of notation

– Mod(g): The mapping class group of a surface of genus g.

– Mod(g, n): The mapping class group of a genus g surface with n marked points.

– Modb(g, n): The mapping class group of a genus g surface with n marked points, and
b boundary components.

– Mg: The moduli space of genus g Riemann/hyperbolic surfaces.

– Tg: The moduli space of marked genus g Riemann/hyperbolic surface, also known as
the Teichmüller space of genus g surfaces.

– Out(G): The outer automorphism group of the group G.

– Fn: The free group on n generators.

– χOrb: The orbifold Euler characteristic. See Definition 1.16.

– κi: The κ classes in the Q-cohomology ofMg. See Definition 1.11.

– Gr(V, k): The Grassmanian of k-dimensional subspaces of a vector space V .

– Z: The complex of curves on a surface. See Definition 1.23.

– A: The arc complex on a surface. See Definition 1.24.

– V (f): The vanishing locus of a polynomial/homogeneous polynomial in affine/projective
space.

– PX : The Hilbert polynomial of a projective variety embedded in CPn. See Definition
2.16

– HilbP : The Hilbert scheme associated to a polynomial P . See Definition 2.18.

– AG: The invariant subring of A under the action of G.

– X//G: The quotient of X under the action of G in the sense of Geometric Invariant
Theory, referred to as GIT quotient. See Paragraph 2.1.4.
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