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1 Homotopy Excision Theorem

The homotopy excision theorem is a fairly important and useful result in homotopy theory,
and one of its corollaries is the fundamental result in stable homotopy theory.

1.1 Statement and proof of the excision theorem

We’ll need a lemma (without proof) and a couple of definitions before we state the theorem.

Lemma 1.1 (Long exact sequence of relative homotopy groups). For a pair (X,A), the homo-
topy groups fit into the following long exact sequence.

· · · ∂−→ πq(A)
i∗−→ πq(X)

j∗−→ πq(X,A)
∂−→ πq−1(A)

i∗−→ · · ·

The maps i∗ and j∗ are induced by the inclusions.

Definition 1.1 (n-connectivity for maps). A map f from the pair (X,A) to (Y,B) is said to
be n-connected if the induced map on the fundamental group f∗ : πq(X,A)→ πq(Y,B) is
an isomorphism for q < n and a surjection for q = n.

Definition 1.2 (n-connectivity for pairs). A pair (X,A) is said to be n-connected if i∗ :
π0(A) → π0(X) is surjective and πq(X,A) = 0 for all q ≤ n. This is equivalent to saying
that the inclusion map from (A, ∗) → (X, ∗) is n-connected (this follows from the long
exact sequence for relative homotopy groups).

With the terms defined, we can now state the theorem.

Theorem 1.2 (Homotopy excision). LetX1 andX2 be open subspaces of the spaceX , such that
X = X1∪X2, andX0 = X1∩X2 is not empty. If the pair (X1, X0) ism-connected, and (X2, X0)
is n-connected, then the inclusion map i : (X1, X0)→ (X,X2) is (m+ n)-connected, form ≥ 1
and n ≥ 0.

The idea of the proof is borrowed from May [?] : we will try to fit in the maps we want Put citationPut citation

to show are isomorphisms, and surjections into a long exact sequence, and try to show that
the third term vanishes in an appropriate range of dimensions. For this, we’ll need another
form of homotopy groups.

Definition 1.3 (Triad homotopy groups). IfX is a space, andX1 andX2 are open subspaces,
such that the basepoint x0 lies in X0 = X1 ∩ X2, then the triad homotopy groups are
homotopy classes of maps of tetrads of the following form.

(Iq, Iq−2 × {1} × I, Iq−1 × {1}, Jq−2 × I ∪ Iq−1 × {0})

(X,X1, X2, x0)

This is only defined for q ≥ 2.
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Lemma 1.3 (Long exact sequence of triad homotopy groups). The triad homotopy groups fit
into a long exact sequence with relative homotopy groups in the following manner.

· · · ∂−→ πq(X1, X0)
i∗−→ πq(X,X2)

j∗−→ πq(X;X1, X2)
∂−→ πq−1(X1, X0)

i∗−→ · · ·

The maps i∗ and j∗ are induced by the inclusions, and ∂ is the boundary homomorphism, defined by
restricting the map to the face of the cube corresponding toX1.

The proof that this sequence is exact is similar to the exactness proof for long exact
sequence of relative homotopy groups, and hence skipped.

Coming back to the excision theorem, we see that the condition m ≥ 0 and n ≥ 0
forces the map at the level of π0 to be an isomorphism. Furthermore, because m ≥ 1,
by an argument similar to the one in the proof of Seifert–Van Kampen theorem, we get
that π1(X,X2) = 0, hence it’s an isomorphism. That means we only need to check for
2 ≤ q ≤ m + n. By the long exact sequence of triad homotopy groups, it’s equivalent to
proving the following theorem.

Theorem 1.4. With the same hypotheses as that of the homotopy excision theorem,

πq(X;X1, X2) = 0

for all 2 ≤ q ≤ m+ n.

Proof. It will suffice to prove this result whenX is a CW complex, andX1,X2, andX0 are CW
subcomplexes. That’s because we can approximate a space by a CW complex up to homo-
topy, and that won’t change the homotopy groups. By our hypotheses on the connectivity
of (X1, X0) and (X2, X0), (X1, X0) contains no relative q-cells i.e. q-cells outside X0 for
q ≤ m, otherwise πq(X1, X0) wouldn’t be 0. Similarly, (X2, X0) contains no relative q-cells
for q ≤ n. Furthermore, since we’re trying to show a certain map from a compact space is
nullhomotopic, it suffices to consider cases where X is a finite CW complex.

We will prove the result by inducting on the number of relative cells of (X1, X0) and
(X2, X0). Since the base case is the hard part, we’ll show the induction step first. Suppose
we know the result for the triads (X;X ′1, X2) and (X;X1, X

′), where X1 is obtained by
attaching one more cell to X ′1, and X ′ = X ′1 ∪X0 X2 (The first triad satisfies the induction
hypothesis for obvious reasons. The second triad has one relative cell in each component,
so that reduces to the base case.).

By the long exact sequence of a triple, we get exactness in the rows of the following
diagram.

πq(X
′
1, X0) πq(X1, X0), πq(X1, X

′
1) πq−1(X ′1, X0)

πq(X
′, X2) πq(X,X2) πq(X,X

′) πq−1(X ′, X2)

α β γ δ

By the induction hypothesis, the mapsα and γ are surjective, and δ is injective, which means
the map β is surjective. This shows that πq(X;X1, X2) = 0.
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Similarly, if we know the result for (X;X1, X
′
2) and (X;X ′, X2), where X2 is obtained

by attaching one more cell to X ′2, then we have the result for (X;X1, X2), since the map
i : (X1, X0) ↪→ (X,X2) factors through in the following manner.

(X1, X0)
i1
↪−→ (X ′, X ′2)

i2
↪−→ (X,X2)

By the induction hypothesis, both i1∗ and i2∗ are surjections, hence their composite i∗ is a
surjection.

All that is left now is to prove the base case, i.e. when both (X1, X0) and (X2, X0) have
one relative cell. Without loss of generality, let X1 = X0 ∪ Dk, where k > m and X2 =
X0∪Dl, where l > n. We need to show that the associated map of tetrads is nullhomotopic.

(Iq, Iq−2 × {1} × I, Iq−1 × {1}, Jq−2 × I ∪ Iq−1 × {0})

(X,X0 ∪Dk, X0 ∪Dl, x0)

Pick interior points x1 ∈ Dk and x2 ∈ Dl. We then have the following maps of triads.

(X1;X1, X1 − x1) ↪→ (X − x2;X1, X − {x1, x2}) (1)
(X − x2;X1, X − {x1, x2}) ↪→ (X;X1, X − {x1}) (2)

(X;X1, X2) ↪→ (X;X1, X − {x1}) (3)

The maps labelled 1 and 3 induce isomorphisms at the level of triad homotopy groups. This
is easy to see after observing the fact thatDn with an interior point removed can be homo-
toped to its boundary Sn−1. Doing this to the associated disks in map 1 and 3, we see the
isomorphisms. Furthermore, πq(X1;X1, X1− x1) = 0 for q ≥ 2: this follows trivially from
the long exact sequence of triad homotopy groups. That means if we show map 2 induces a
surjection at the level of π∗, we’ll be done.

Pick any map of tetrads f going into (X;X1, X−{x1}). We need to show f is homotopic
to a map into (X−x2;X1, X−{x1, x2}) followed by the inclusion map 2. LetDk

1/2 andDl
1/2

be sub-disks of radius 1
2

. Using the compactness of Iq, it’s easy to divide Iq into smaller
sub-cubes Iqα such that if f(Iqα) intersects Dk

1/2, it’s contained in the interior of Dk and if
it intersects Dl

1/2, it’s contained in the interior of Dl. By simplicial approximation, we can
make f homotopic (as a map of tetrads) to a map g whose restriction to the (k−1) skeleton
of Iq (with its subdivided cubes as cells) (the (k−1) skeleton could possibly be empty as well)
does not coverDk

1/2, and similarly, whose restriction to (l−1)-skeleton does not coverDl
1/2.

Furthermore, we can make sure that we pick an x2 inDl
1/2 such that g−1(x2) has dimension

at most q − l and it does not lie in the image of the (l − 1)-skeleton. Although, this is
intuitively clear, it requires some work, but that will just obscure the proof, so we leave it
be.

Let π : Iq → Iq−1 be a projection map that discards the last coordinate, and let K be
the following space.

K = π−1 ◦ π ◦ g−1(x2)

4



This meansK has dimensions at most 1 more than g−1(x2). We have the following inequal-
ities.

dimK ≤ dim g−1(x2) + 1

≤ q − l + 1

< m+ 1

The last inequality follows since l > n, and q ≤ m + n. And since m < k, and all our
dimensions are integers, that lets us directly conclude dimK ≤ k − 1. This means g(K)
does not cover all of Dk

1/2. We pick x1 ∈ Dk
1/2 such that it does not lie in g(K). It’s not too

hard to see that π(g−1(x1)) ∪ ∂Iq−1 and π(g−1(x2)) are disjoint (drawing a picture in the
case of I3 helps visualizing the scenario). Both of these are closed subsets of Iq−1, hence by Insert image

perhaps?
Insert image
perhaps?

Uryssohn’s lemma, there exists a function v : Iq−1 → I such that the following equalities
are satisfied.

v(π(g−1(x1)) ∪ ∂Iq−1) = 0

v(π(g−1(x2))) = 1

We use this to define a map h from Iq+1 to Iq.

h(r, s, t) = (r, s− s · t · v(r))

Let f ′ : Iq → X be defined as f ′(r, s) = g ◦ h(r, s, 1). We have the following observations.

h(r, s, 0) = (r, s)

h(r, 0, t) = (r, 0)

h(r, s, t) = (r, s) if r ∈ ∂Iq−1

Furthermore, if h(r, s, t) ∈ g−1(x1), then v(r) = 0, and hence h(r, s, t) = (r, s). Similarly,
h(r, s, t) ∈ g−1(x2) implies v(r) = 1, and h(r, s, t) = (r, s− st). Thus, g ◦ h is the required
homotopy of tetrads.

1.2 Corollaries of the excision theorem

1.2.1 Freudenthal suspension theorem

For any space X , we have the suspension homomorphism, Σ∗, defined as follows.

Σq : πq(X)→ πq+1(ΣX)

Σq([f ] : Sq → X) = [f ∧ id]

Under certain additional conditions on the spaceX and q, Σq is an isomorphism. The exci-
sion theorem lets us easily deduce what those conditions are.

Theorem 1.5 (Freudenthal suspension). If X is n-connected, then the suspension homomor-
phism is an isomorphism for q ≤ 2n and a surjection for q = 2n+ 1.
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Proof. LetC+X andC−X be the upper and lower cones of ΣX . Their intersection isX . The
pairs (C+X,X) and (C−X,X) are both n-connected (this follows from the fact that cones
are contractible, and the long exact sequence of relative homotopy groups). By the homo-
topy excision theorem, we get that the inclusion of (C+X,X) into (ΣX,C−X) is an iso-
morphism until π2n and a surjection for π2n+1. Again, using the long exact sequence of rel-
ative homotopy groups, we get that π∗(C+X,X) ∼= π∗(X), and similarly π∗(ΣX,C−X) ∼=
π∗+1(ΣX). There is a bit of work involved in showing that this isomorphism/surjection is
actually the suspension homomorphism, but that’s technical, and not too hard.

1.2.2 Stable homotopy

We now look at the colimit of the following diagram.

πq(S
0)

Σq−→ πq+1(S1)
Σq+1−−−→ πq+2(S2)

Σq+2−−−→ · · ·

Since Sn is n-connected, after q
2

steps, the arrows in the diagram become isomorphisms,
which means the colimit of the diagram is what the diagram stabilizes to after q

2
steps. We

call the colimit the qth stable homotopy group of S0. From this point on, it’s not too hard to
show that the stable homotopy functor is a nicely behaved functor: in fact, it’s a generalized
homology theory.

2 Comparison theorem for cohomology theories

Theorem 2.1 (Comparison Theorem). If h and k are two reduced cohomology theories satisfying
the (DV) axiom, such that there exists a natural transformation χ from h∗ to k∗ and χ induces a
natural isomorphism fromhn(S0) to kn(S0) for alln, thenχ is a natural isomorphism of cohomology
theories.

Proof. First, we’ll use a simple reduction. For any pointed space X , we’ll show if χ is an
isomorphism fromhn(X+) tokn(X+), thenχ is an isomorphism betweenhn(X) andkn(X).
Here, X+ is the space X q +, with the basepoint being +. Consider the following cofiber
sequence.

S0 i−→ X+ −→ X

The map from S0 to X+ sends the basepoint of S0 to +, and the other point to the original
basepoint ofX . This cofiber sequence splits, which means an isomorphism from hn(X+) to
kn(X+) is equivalent to an isomorphism from h(X) to k(X) (by the five lemma).

The next step in the proof is to show the isomorphism for finite CW complexes. This
will be done by showing the isomorphism for Sn and Dn for all n, and then using the fact
that all finite CW complexes are pushouts of disks and spheres. We have an isomorphism on
all spheres from the suspension isomorphism, and that extends to wedges of spheres. And
since all disks are contractible, we have an isomorphism there as well. This also tells us that
χ is an isomorphism from 0-dimensional CW complexes. We’ll proceed by induction at this
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point. An n skeleton is defined by the following pushout.

∐
Sn+ X

(n−1)
+

∐
Dn

+ X
(n)
+

We then apply the Mayer-Vietoris sequence to the subspaces
∐
Dn

+ and X(n−1)
+ . Call these

subspaces T1 and T2. Their intersection T0 is the wedge of spheres.

hn+1(T1)⊕ hn+1(T2) hn+1(T0) hn(X(n)) hn+1(T1)⊕ hn+1(T2) hn+1(T0)

kn+1(T1)⊕ kn+1(T2) kn+1(T0) kn(X(n)) kn+1(T1)⊕ kn+1(T2) kn+1(T0)

∼= ∼= χ ∼= ∼=

By the induction hypothesis, all but the middle arrows are isomorphisms, hence by the five
lemma, χ is an isomorphism too. This shows χ is a natural isomorphism for finite dimen-
sional CW complexes.

The final step is to show this for infinite dimensional CW complexes. This will require the
use of Milnor’s theorem B.5. For any infinite dimensional CW complexX , take the filtration
consisting of its finite dimensional skeletons. Then we have maps between the following
short exact sequences.

0 limn
1hq−1(X(n)) hq(X) limn h

q(X(n)) 0

0 limn
1kq−1(X(n)) kq(X) limn k

q(X(n)) 0

∼= ∼= χ ∼= ∼=

By the proof for the finite dimensional case, we have the all but the middle arrow are isomor-
phisms. By the five lemma, we get the middle arrow is an isomorphism too, which concludes
the proof.

3 Brown’s representability theorem

In this section, we shall see that all reduced cohomology theories that satisfy the wedge
sum (DV) axiom are representable functors, i.e. they are naturally isomorphic to the hom
functor in the homotopy category hCW∗. In particular, for a given reduced cohomology
theory h∗, we’ll construct a sequence of spacesZ(n), which we’ll call a spectrum, such that
h̃n(X) is naturally isomorphic to [X,Z(n)].
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3.1 Spectra and cohomology theories

Definition 3.1 (Ω-Spectrum). A spectrum is a Z indexed sequence of pointed spaces Z(n)
together with structure mapsσn : ΣZ(n)→ Z(n+1). If the adjoints of the structure maps,
i.e. the maps σ̃n : Z(n) → ΩZ(n + 1) are homotopy equivalences, then the spectrum is
called an Ω-spectrum.

Proposition 3.1. Given a Ω-spectrumZ , one can define the following functor.

h̃n(X;Z) = [X,Z(n)]

This is a contravariant functor which satisfies the homotopy invariance (H), suspension (S), exact-
ness (E), and the wedge sum (DV) axiom. It is therefore a reduced cohomology theory.

Proof. We’ll deal with the axioms one at a time.

Homotopy invariance (H): This is obvious, because we are looking at homotopy classes of
maps.

Suspension (S): We need to show there is a natural isomorphism from h̃n(X) to h̃n+1(ΣX).
Note that the adjoint of the structure maps are homotopy equivalences. We therefore
have a natural isomorphism.

[X,Z(n)] ∼= [X,ΩZ(n+ 1)]

On the other hand, since Σ are Ω are adjoints, we have the following natural isomor-
phism.

[X,ΩZ(n+ 1)] ∼= [ΣX,Z(n+ 1)]

Composing the two natural isomorphisms, we get our required isomorphism.

Exactness (E): We need to show for any cofibration i : A ↪→ X , the following sequence is
exact.

h̃n(A)← h̃n(X)← h̃n (X/A)

Using the cofiber sequence, we get that following sequence is exact.

[A,Z(n)]← [X,Z(n)]← [(X/A) ,Z(n)]

Wedge sum (DV): The functor [·,Z(n)] satisfies (DV) axiom. This is fairly easy to check.
That means h̃∗ satisfies (DV) axiom.

To construct
easy ex-
amples of
spectra, one
needs to
check that
the filtered
colimits
commute
with the
loop space
functor, at
least for
nice enough
spaces.

To construct
easy ex-
amples of
spectra, one
needs to
check that
the filtered
colimits
commute
with the
loop space
functor, at
least for
nice enough
spaces.
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3.2 Proof of Brown’s representability theorem

Note: This proof is primarily taken from A. J. Tolland’s article[?].
In the previous section, we saw that if we are given an Ω-spectrum, we can construct a

reduced cohomology theory using the spectrum. Brown’s representability theorem is the
converse of the previous theorem, i.e. given a reduced cohomology theory which satisfies
the (DV) axiom, it can be represented by an Ω-spectrum, which is unique up to homotopy.
This theorem is fairly technical, and will require the use of the theorem on Milnor exact
sequence (theorem B.5).

Theorem 3.2 (Brown’s representability theorem). Let h̃∗ be a reduced cohomology theory sat-
isfying the (DV) axiom. Then there is an Ω-spectrum Z such that h̃n is naturally isomorphic to
[·,Z(n)].

Proof. The proof will have two main parts. The first part will involve constructing the spaces
Z(n) for eachn such that there is a natural isomorphism from h̃n(X) to [X,Z(n)] for all CW
complexesX . The second part will involve constructing the structure maps from ΣZ(n)→
Z(n+ 1).

Fix an n ∈ Z. We will construct the space Z(n) as a CW complex, using finite dimen-
sional skeletonsZ(n)k. For each k, we will also pick a cohomology class cn(k) in h̃n(Z(n)k)

such that the map dmn (k) : [Sm,Z(n)k] → h̃n(Sm) is an isomorphism for m < k and sur-
jection for m = k . Show that

this is a
group ho-
momorphism
for m ≥ 1

Show that
this is a
group ho-
momorphism
for m ≥ 1dmn (k) : [Sm,Z(n)k]→ h̃n(Sm)

dmn (k) : [f ] 7→ f ∗(cn(k))

For k = 0, we define Z(n)0 as follows.

Z(n)0 :=
∨

α∈h̃n(S0)

S0
α

The cohomology group of Z(n)0 is given by a direct product, since h̃n satisfies the (DV)
axiom.

h̃n(Z(n)0) ∼=
∏

α∈h̃n(S0)

h̃n(S0
α)

Pick the following element as cn(0).

cn(0) :=
∏

α∈h̃n(S0)

α

Since k = 0, we only need to show that d0
n(0) is a surjection. Pick any α ∈ h̃n(S0). Corre-

sponding to this α, there’s a copy of S0 sitting inside Z(n)0. Let f be the inclusion map of
this copy of S0 intoZ(n)0. Then the induced map on cohomology is the projection map on
the αth coordinate, since the cohomology theory satisfies the (DV) axiom. Applying this
induced map on cn(0), we see that in the αth coordinate, it has α, because of the way we
defined it. This shows the map is surjective.
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To prove the induction step, suppose we have defined the space Z(n)k and cn(k) that
satisfy the required properties. Let Kk E

[
Sk,Z(n)k

]
be the kernel of the map dkn(k). We The cofibra-

tion probably
works if you
take a sub-
set of Kk
that does not
contain the
constant map

The cofibra-
tion probably
works if you
take a sub-
set of Kk
that does not
contain the
constant map

construct the following map.

φn(k) :
∨
x∈Kk

Sk → Z(n)k ∨
∨

y∈h̃n(Sk+1)

Sk+1

This map is obtained by taking the wedge of maps from Sk toZ(n)k which are contained in
Kk. This is a cofibration . By the (DV) axiom, we have the following cohomology groups. Not sure how

to show this,
or whether
this is en-
tirely cor-
rect. Need to
check later

Not sure how
to show this,
or whether
this is en-
tirely cor-
rect. Need to
check laterh̃n

Z(n)k ∨
∨

y∈h̃n(Sk+1)

Sk+1

 = h̃n(Z(n)k)×
∏

y∈h̃n(Sk+1)

h̃n(Sk+1)

From this, we can immediately see that the elements of h̃n
(
Z(n)k ∨

∨
y∈h̃n(Sk+1) S

k+1
)

of
the form (cn(k), •) (where • is any arbitrary element) is in the kernel of φ∗n(k). Define
Z(n)k+1 to be the cofiber of the map φn(k), and let the map to the cofiber be bn(k). By
the exactness axiom, we have that the following sequence is exact.

h̃n(Z(n)k+1)
b∗n(k)−−−→ h̃n(Z(n)k)×

∏
y∈h̃n(Sk+1)

h̃n(Sk+1)
φ∗n(k)−−−→

∏
x∈Kk

h̃n(Sk)

Pick the following element A ∈
∏

y∈h̃n(Sk+1) h̃
n(Sk+1).

A :=
∏

α∈h̃n(Sk+1)

α

The element (cn(k), A) lies in the kernel of φ∗n(k), which means it lies in the image of b∗n(k).
We define cn(k+ 1) to be a pre-image of (cn(k), A). Seeing that the associated map dmn (k+
1) is surjective for m = k + 1 is easy enough. The proof is the same as that in the case
of d0

n(0).The trickier part is showing injectivity for m < k + 1. Since dnm(k) is a group Maybe write
the proof
anyways. See
if it adds to
the clarity at
all

Maybe write
the proof
anyways. See
if it adds to
the clarity at
all

homomorphism (for M ≥ 1), for m ≥ 1, it will suffice to show the kernel is trivial. Pick

I’m skip-
ping the
proof of the
case when
m = 0.
I think it
should be
fairly easy
once I fig-
ure out why
the map is a
cofibration.

I’m skip-
ping the
proof of the
case when
m = 0.
I think it
should be
fairly easy
once I fig-
ure out why
the map is a
cofibration.

an element, say [f ] in the kernel. We need to show that f is a nullhomotopic map. But at
each step, we coned off the kernel of dmn (m). That means f is nullhomotopic. This shows
the injectivity and hence the isomorphism for m < k + 1.

Next, we define Z(n) the colimit of the following diagram.

Z(n)0

bn(0)
↪−−→ Z(n)1

bn(1)
↪−−→ Z(n)2

bn(2)
↪−−→ · · ·

Note that Z(n)k are CW subcomplexes of Z(n), in particular, we can appeal to Milnor’s
theorem B.5, i.e. the following sequence is exact.

0→ lim
k

1h̃n−1(Z(n)k)→ h̃n(Z(n))→ lim
k
h̃n(Z(n)k)→ 0

Furthermore the element (c(n)0, c(n)1, c(n)2, . . .) lies in limk h̃
n(Z(n)k) since we pick c(n)k+1

as a preimage of c(n)k. By exactness, we get a preimage cn in h̃n(Z(n)). We define a map
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dmn : [Sm,Z(n)] → h̃n(Sm) which sends [f ] to f ∗(cn). Because of the inductive construc-
tion, we know this is an isomorphism for all m ≥ 0 (To see this, observe that a map from a
compact space like Sm factors through a finite stage in the colimit Z(n)). This can be ex-
tended to a natural isomorphism for all finite CW complexes. This can be done by applying
Mayer-Vietoris to the n−1 skeleton and the discs being attached and then applying the five
lemma, like we did in section 2. Now that we know how to represent the individual functors
h̃n, we need to construct the structure maps from the suspension homomorphism of the
cohomology theory. Let Tn be the suspension homomorphism from h̃n(X) to h̃n+1(ΣX). If
we set X to be Z(n), we have the following homomorphism.

Tn : h̃n(Z(n))→ h̃n+1(ΣZ(n+ 1))

But this is equivalent to the following homomorphism.

T̃n : [Z(n),Z(n)]→ [ΣZ(n),Z(n+ 1)]

We do the most obvious thing, i.e. apply T̃n to the homotopy class of the identity map, and
we pick a map to be our structure map from the resulting homotopy class. Show that

this forms an
Ω-spectrum

Show that
this forms an
Ω-spectrum

This result enables us to study any reduced cohomology theory by studying its associ-
ated spectrum. This lets us study many cohomology theories that were intractable by the
usual methods, e.g. cobordism, which is represented by the Thom spectrum.
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A Definitions and notation

Definition A.1 (Suspension of a pointed space). The suspension ΣX of a pointed space X
is the smash product S1 ∧X .

Definition A.2 (Loop space of a pointed space). The loop spaces ΩX of a pointed space X
is the set of all pointed maps from S1 to X with the compact-open topology.

Definition A.3 (lim1). Let T be the category of towers of abelian groups, i.e. N indexed set
of abelian groups Gi with maps fi : Gi → Gi−1, and maps are set of arrows that make the
whole thing commute . Then lim is a left exact functor from T to AbGrp, and we define Check that

this category
has enough
injectives

Check that
this category
has enough
injectives

lim1 to be the first right derived functor of lim.

B Some useful lemmas and theorems

Note: Although we state many of the lemmas here for TOP, they are also true for TOP∗,
and the proof is similar.

Lemma B.1. If i : A ↪→ X is a cofibration (in the category TOP), then the mapping coneC(i) is
homotopy equivalent toX/A.

Proof. We will first construct the maps to and from C(i) to X/A. The maps from C(i) to
X/A is the map that collapses the cone of A to a point corresponding to A in X/A. Now
consider a map fromH : A× I toC(i), such thatH contractsA to a point inC(i), starting
from the inclusion ofA inX . Let the map j fromX to C(i) be the inclusion map. Since i is
a cofibration, we can extendH with the initial condition j to a map J : X × I → C(i). But
J(·, 1) collapses A to a point. That means it factors through a X/A. This gives us a map k
from X/A to C(i).

The fact that these maps are homotopy inverses can be verified using the homotopy Not sure of
this. Verify
later.

Not sure of
this. Verify
later.J .

Lemma B.2. In the category TOP, the following sequence is h-coexact.

A
f−→ B

i−→ C(f)

That means for any spaceZ , the following sequence of abelian groups is exact.

[A,Z]← [B,Z]← [C(f), Z]

Proof. If an element [c] ∈ [B,Z] goes to 0 in [A,Z], that means c ◦ f : A → Z is nullho-
motopic, where c is a representative of [c]. But that means there is some function d ∈ C(f)
such that c = d ◦ i. This shows the exactness of the sequence.

Lemma B.3. IfK is a compact space, letAi be a sequence of spaces where points are closed, andA
is the colimit of the following diagram:

A0 ↪→ A1 ↪→ A2 ↪→ · · ·

where all the embeddings are closed, then a map fromK toA factors finitely through someAi.
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Proof. Let J = f(K) be the compact image ofK inA. For each setAi\Ai−1, pick an element
ci of J in the set, if J intersectsAi \Ai−1. SinceAi’s are closed, that means the subset ci has
the discrete topology. Furthermore, since points are closed, the set {∪ci} is a closed subset
of J , hence compact. And compact spaces with discrete topology are finite. That means
only finitely manyAi \Ai−1 intersect J . This means the map factors through at some finite
stage.

Theorem B.4 (Alternative characterization of lim1). IfF is an object in the tower category, then
lim1(F ) is the cokernel of the following map.

αF :
∏
i∈N

Fi →
∏
i∈N

Fi

αF : (g0, g1, g2, . . .) 7→ (g0 − f1(g1), g1 − f2(g2), . . .)

Proof. The first step in characterizing lim1 in the following manner is to pick an appropriate
injective resolution. LetF be a tower of abelian groups and I an injective tower it maps into
via a monomorphism m.

F0 F1 F2 F3 · · ·

I0 I1 I2 I3 · · ·

m0

f1

m1

f2

m2

f3

m3

f4

i1 i2 i3 i4

Without losing any generality, we can assume all the maps ik in I are surjective. Other-
wise, we just replace Ik by

⊕k
j=0 Ij , and have the maps on all but the last coordinate be the

identity. This is important, because we’ll need surjectivity of the maps later. We can now
construct an injective resolution of F as the following exact sequence.

0 −→ F
m−→ I

q−→ coker(m) −→ 0

The first derived functor is the homology at lim(coker(m)) of the following sequence.

0 −→ lim(F )
lim(m)−−−−→ lim(I)

lim(q)−−−→ lim(coker(m)) −→ 0

Now, just likeαF was defined in the statement of the theorem, we defineαI andαcoker(m).
Then we get the following short exact sequence of chain complexes (the rows are exact).

0 0 0

0
∏

i Fi
∏

i Ii
∏

i coker(m) 0

0
∏

i Fi
∏

i Ii
∏

i coker(m) 0

0 0 0

m

αF

q

αI αcoker(m)

m q
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We can apply the snake lemma to get the following long exact sequence.

0 ker(αF ) ker(αI) ker(αcoker(m))

coker(αF ) coker(αI) coker(αcoker(m)) 0

m∗ q∗

∂

m∗ q∗

But we see from the definition of lim that the kernels of α are precisely the lim. Thus we
have the following long exact sequence.

0 lim(F ) lim(I) lim(coker(m))

coker(αF ) coker(αI) coker(αcoker(m)) 0

lim(m) lim(q)

∂

m∗ q∗

The last step in the proof will be to show that coker(αI) is 0, in which case lim1(F ) is
isomorphic to coker(αF ). Showing that coker(αI) is 0 is equivalent to showing that αI is
surjective. To see this, pick any element (j0, j1, j2, . . .) ∈

∏
i Ii. We need to find an element

(k0, k1, k2, k3, . . .) such that we have the following equalities.

j0 = k0 − i1(k1)

j1 = k1 − i2(k2)

j2 = k2 − i3(k3)

...

But notice that we constructed I such that all the ik are surjective. That means this system
of equations can be solved simultaneously and coker(αI) is 0. This shows the result.

Theorem B.5 (Milnor exact sequence). If {in : Xn ↪→ Xn+1} for n ∈ N are a sequence of
nested (pointed) CW subcomplexes such that X =

⋃
nXn, and h̃∗ is a reduced cohomology theory,

then we have the following exact sequence for all i ≥ 1.

0→ lim
n

1h̃i−1(Xn)→ h̃i(X)→ lim
n
h̃i(Xn)→ 0

Proof. We first construct the mapping telescope of the inclusions. We start with the (un-
pointed) space X × R+. We then consider the following subspace S.

S =
⋃
i∈N

Xi × [i, i+ 1]

We then quotient S by the subspace ∗ ×R+ and we use the quotient out space as the base-
point of the pointed mapping telescope T .

We define two subspaces of the mapping telescope; we’ll apply Mayer-Vietoris to these
subspaces.

T1 :=
⋃
i∈N

X2i+1 × [2i+ 1, 2i+ 2]

T2 :=
⋃
i∈N

X2i × [2i, 2i+ 1]
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To be more precise, we should be taking open neighbourhoods of these spaces to apply
Mayer-Vietoris, but the open neighbourhoods deformation retract to these spaces anyways,
so it’s alright. Observe that the intersection T0 of T1 and T2 is homeomorphic to the wedge
of all the Xi. By similar reasoning (although we replace homeomorphism by homotopy
equivalence), we get that T1 is homotopy equivalent to the wedge of all theXi for odd i and
T2 the wedge of Xi for all even i. We consider the Mayer-Vietoris sequence, and use the
(DV) axiom to get isomorphisms.

h̃q+1(T ) h̃q(T0) h̃q(T1)⊕ h̃q(T2) h̃q+1(T )

∏
i∈N h̃

q(Xi)
∏

i∈N h̃
q(X2i)⊕

∏
i∈N h̃

q(X2i+1)

∏
i∈N h̃

q(Xi)

∼=

φq

∼=

·(−1)i

mq

We need to determine how the map mq should be defined to make the diagram commute.
We do this by seeing how the map behaves on the basis. First, we take x0 ∈ h̃q(X0). The
first isomorphism takes it to (x, 0), the map φq takes it x−0 and finally it goes to x. Next, we
see how x1 ∈ h̃q(X1) behaves. It first gets sent to (i∗0x1, x1) and then to i∗0x1 − x1. Finally,
the (−1)i sends it to x1 − i∗0x1. Similarly, x2 ∈ h̃q(X2) gets sent to x2 − i∗1x2, and so go on
the rest of the basis elements. We now have the following long exact sequence.

h̃q+1(T )
∏

i∈N h̃
q(Xi)

∏
i∈N h̃

q(Xi) h̃q(T )
mq

From this, we get the following short exact sequence.

0 ker(mq) h̃q(T ) coker(mq−1) 0

From theorem B.4, we see that ker(mq) is limn(h̃q(Xn)) and coker(mq−1) is limn
1(h̃q−1(Xn)).

This proves the theorem.
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