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A divisor on a compact Riemann surface is just a labelling of finitely many points with an integer. This may not
seem like a lot of data, but a divisor manages to encode a fair amount of information. In this expository article,
we’ll see how a divisor is really the same thing as a map into a projective space, and a complex line bundle on a
surface. This will let us translate properties of line bundles like the existence of enough sections into statements
about divisors, which are easier to verify. We will also construct a complex manifold called the Jacobian of the
Riemann surface, and show that it is isomorphic to the collection of divisors (modulo some relations) via the Abel-
Jacobi map. The Jacobian turns out to be a manifold which is easy to understand and provides some insight into
the group of divisors.

Many of the results that we show here will also hold for non-singular curves over any algebraically closed field,
not just C. Some of the proof techniques however don’t go through, especially if they involve integration of forms.
We’ll point out whenever something like this does happen and outline alternative approaches to proofs that work
over other fields.

1. Divisors

We shall denote a compact Riemann surface by the symbol X in this and the subsequent sections.

Definition 1.1 (Divisor). A divisor on a compact Riemann surface X is a finitely supported function D : X → Z.
The collection of points p where D(p) 6= 0 is called the support of the divisor D

The collection of all divisors Div(X) forms an abelian group under pointwise addition. To emphasize the fact
that divisors form a group, we shall usually denote a divisor as a finite Z-linear combination of points in X.

D :=
∑
p∈X

D(p) · p

The most important examples of divisors come from meromorphic functions (i.e. holomorphic maps to CP1) and
meromorphic 1-forms on X.

Definition 1.2 (Principal divisor). Let f be a non-zero meromorphic function on X. Since X is compact, f has
finitely many zeroes and poles. Let {z1, . . . , zk} be its zeroes and {p1, . . . , pl} be its poles, both counted with
multiplicities. Then we can define a divisor (f), called the principal divisor of f .

(f) :=

k∑
i=1

zi −
l∑

j=1

pj

1
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Example 1.1. Let X = CP1, let f be the function
z − a1

(z − a2)2
. This function has a zero of order 1 at a1 and

another zero of order 1 at ∞. It has a pole of order 2 at a2. The principal divisor (f) associated to this function is
a1 +∞− 2 · a2.

In a similar manner, we can associate a divisor to a meromorphic 1-form.

Definition 1.3 (Canonical divisor). Let ω be a meromorphic 1-form on X. Let {z1, . . . , zk} be its zeroes and
{p1, . . . , pl} be its poles, both counted with multiplicities. Then we can define a divisor (ω), called the canonical
divisor of ω.

(ω) :=

k∑
i=1

zi −
l∑

j=1

pj

Example 1.2. Consider CP1 with two coordinates z and w around 0 and ∞ respectively, related by z = 1
w . We

can define a form dz around 0, which transforms to 1
w2 dw. That means this form has no zeroes, and a pole of order

2 at ∞. The canonical divisor (ω) is given by −2 · ∞.

Example 1.3. Let X be a torus, i.e. a quotient of C by a lattice (1, τ), where τ ∈ H+. The form dz on C descends
to a form dz on the torus. This form has no zeroes or poles anywhere, which means the associated canonical divisor
is just the empty divisor, i.e. no point of X is in the support.

For any divisor, we can take the coefficients of each point of X and add them up. Since the support of a divisor
is always finite, this gives us an integer called the degree of the divisor.

Definition 1.4 (Degree of a divisor). Let D be a divisor on X. Then the degree of the divisor is defined in the
following manner.

deg(D) :=
∑
p∈X

D(p)

The subgroup of Div(X) consisting of degree 0 divisors is denoted by Div0(X). These two groups fit into the
following short exact sequence.

0 −→ Div0(X) −→ Div(X)
deg−→ Z −→ 0

If we pick a basepoint x0 of X, then there’s a map Div(X) to Div0(X) given by D 7→ D− deg(D) · x0. This map is
a splitting of the short exact sequence. We get a decomposition of Div(X) as Div0(X)⊕Z. This means if we want
to understand Div(X), it suffices to understand Div0(X).

The divisor we constructed in Example 2.2 and 1.3 have degree 0, whereas the one in Example 1.2 has degree
equal to −2. Notice that the principal divisor we constructed turned out to have degree 0. This is not a coincidence:
any other principal divisor will also turn out to have degree 0.

Lemma 1. Let (f) be a principal divisor on any compact Riemann surface. Then the degree of (f) is 0.

Proof. Recall that the principal divisor (f) is
∑
i zi −

∑
j pj , where zi and pj are zeroes and poles counted with

multiplicities. To show that the degree is 0, we’ll need to argue that the number of zeroes equals the number of
poles. In fact, a slightly stronger result is true: the function φ that sends p ∈ CP1 to the number of points in f−1(p)
(counted with multiplicities) is a constant function. To show this, it will suffice to show that φ is locally constant,
since CP1 is connected.

To show φ is locally constant, pick any point p ∈ CP1 and let p1, . . . , pk be its preimages, counted without
multiplicities, i.e. just the set f−1(p). Let the multiplicity of the preimage pi be di. The value of the function φ at
p is thus

∑
i di. Around each of these points, we can pick a coordinate chart such that the map f looks like z 7→ zdi

in the local coordinates. If we perturb p by a small amount to p′, all preimages of p′ will also be close to p. In fact,
something better happens: in a chart where the map f looked like z 7→ zdi , there will be di many preimages of p′,
and all of them will have multiplicity 1. This follows from a result in complex analysis which states that for p′ 6= 0,
the function zd − p′ has d simple zeroes. What this means for us is that the number of preimages of p′ are

∑
i di,

which was the same as the number of preimages of p counted with multiplicities. We have shown that for a p′ close
enough to p, φ(p) = φ(p′), which means φ is locally constant. �

The above proof can also be made completely algebraic. The key idea stays the same, i.e. the number of
preimages of any point is a constant function. In fact, that constant number turns out to be [M(X) : M(CP1)],
where M(X) and M(CP2) are the field of meromorphic functions on these spaces. Theorem 1.5 in [7] fills in more
details.
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Principal divisors also behave nicely with respect to multiplication with functions, i.e. they satisfy the following
identities for any meromorphic functions f and g.

(fg) = (f) + (g)

In particular, this shows the set of principal divisors PDiv(X) forms a subgroup of Div(X) and also of Div0(X) (by
Lemma 1). To understand these groups better, it’s useful to look at the quotient groups Pic(X) := Div(X)/PDiv(X)
and Pic0(X) := Div(X)/PDiv(X). These groups are called the Picard groups of the Riemann surface X. As it
turns out, the quotient group Pic(X) and the principal divisors PDiv(X) are far easier to understand than the
infinitely generated group Div(X). Another reason why the Picard group is interesting is because a lot of divisors
that show up naturally are only well defined up to a principal divisor. In that case, it makes sense to think of these
naturally occurring divisors as living in Pic(X), rather than Div(X).

The next thing to consider are spaces of functions associated with divisors. In particular, we’ll look at the space
L(D) for a given divisor D.

Definition 1.5. The space L(D) is the vector space consisting of all meromorphic functions f such that (f)+D ≥ 0,
i.e. the divisor (f) +D has a non-negative value for all points p ∈ X.

Now suppose we pick another divisor D+(g). It then turns out that the space L(D) and L(D+(g)) are isomorphic
vector spaces, where the isomorphism is given by f 7→ fg−1. This is an example of a natural construction which
descends to the Picard group.

The space L(D) will crop up again in the future, and we’ll need the following lemma.

Lemma 2. If D is a divisor of negative degree, then the space L(D) consists only of the function 0, i.e. it’s trivial.

Proof. Suppose there was some meromorphic function g such that (g)+D ≥ 0. That would mean deg((g))+deg(D) ≥
0. But the degree of a principal divisor is 0, and deg(D) is negative, which leads to a contradiction.1 �

Another natural construction that descends to the Picard group is the collection of canonical divisors. Let ω
and γ be two meromorphic 1-forms on a Riemann surface X. Then there exists a meromorphic function f such

that γ = fω. This follows from the fact that in one local chart where ω = H(z)dz and γ = G(z)dz, ω = H(z)
G(z) γ.

On some other coordinates w, where z = c(w), the forms become ω = H(c(w))c′(w)dw and γ = G(c(w))c′(w)dw.

In this coordinate chart, ω = H(c(w))
G(c(w)) , but this function equals H(z)

G(z) on the overlap of the two charts. Any two

meromorphic functions that agree on an open set must agree everywhere, which means ω = H
G γ globally. What

this means in particular is that the canonical divisors (ω) and (γ) go to the same element in Pic(X). This is why
a canonical divisor is often called the canonical divisor, and denoted by K.

We can now state the Riemann-Roch theorem, but we will not prove it.

Theorem 3 (Riemann-Roch). If X is a compact Riemann surface with genus g, and D is a divisor on X, then
the dimensions of L(D) and L(K −D) are related in the following manner.

dim(L(D))− dim(L(K −D)) = deg(D)− g + 1

This theorem has several consequences; one consequence will be especially important when analyzing the Abel-
Jacobi map later in the article, and that is the following.

Corollary 4. The space of holomorphic 1-forms Ω1(X) on a Riemann surface X of genus g is g-dimensional.

Proof. If D is the empty divisor, then the space L(D) is just the space of all holomorphic functions (because the
empty divisor forces it to have no poles). But the space of holomorphic functions on X is just C, hence 1-dimensional.
Plugging in the empty divisor into the Riemann-Roch formula, and using the fact we just mentioned, we get the
following.

dim(L(K)) = g

Suppose now that K = (ω) for some meromorphic 1-form ω. Then for any f ∈ L(K), fω will not have any
poles, because if it did, (f) + (ω) would not be non-negative everywhere. That means fω is a holomorphic 1-form.
Conversely, suppose γ is a holomorphic 1-form. It can be written as gω, where g is some meromorphic function.
Since (g) + (ω) = (γ) ≥ 0, g ∈ L(K). This shows that the space of holomorphic 1-forms is isomorphic to L(K) and
thus has dimension g. �

1 In all earnestness, we haven’t defined what the principal divisor associated to the 0 function means. One can define it abstractly
to be the 0 vector in the space L(D). A more intuitive, but informal way of thinking about it is as a divisor supported everywhere on

X with its value at every point being +∞. That way ((0)) + D is always non-negative, no matter what D is.
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These results hold for algebraic curves over any closed fields. When working specifically with Riemann surfaces,
it’s possible to bypass Riemann-Roch entirely, and get this result via Hodge theory. Hodge theory gives a decom-
position of H1

dR(X) as H1,0(X) ⊕ H0,1(X), where H1,0(X) is the space of holomorphic forms, and H0,1(X) the
space of anti-holomorphic forms. Since H1

dR(X) is 2g-dimensional, the space of holomorphic 1-forms turns out to
be g dimensional.

2. Maps into Projective Spaces

We have already seen examples of maps from Riemann surfaces to projective spaces, namely meromorphic maps,
which are holomorphic maps from the Riemann surface to CP1. In terms of coordinates on CP1, a map like this can
be thought of as sending z to [1 : f(z)]. This makes sense at all points except at the poles of f , where the coordinates
end up looking like [1 : ∞]. But this function can be extended holomorphically over the poles. Around each pole,
choose local coordinates such that f(z) = 1

zd
. For all non-zero z in this chart, [1 : f(z)] =

[
1 : 1

zd

]
= [zd : 1]. The

last expression is valid even at the point z = 0, and its clear that this is a holomorphic extension.
This suggests what a holomorphic map into CPn should look like: it should locally like a holomorphic map into

a domain in Cn.

Definition 2.1 (Holomorphic maps to CPn). A map f from a compact Riemann surface X to CPn is holomorphic
if around each point p ∈ X we can find a coordinate chart such that f in that coordinate chart looks like the
following.

f(z) = [f0(z) : f1(z) : · · · : fn(z)]

Furthermore, one of the fi, say fk should not vanish anywhere on the coordinate chart, and the functions fi
fk

should

be holomorphic.

The first thing we need to verify is that under this definition of a holomorphic mapping into CPn, there actually
exist some non-trivial functions.

Example 2.1. Let {f0, . . . , fn} be meromorphic functions on X. Then the map given by f(z) = [f0(z), . . . , fn(z)]
is a well defined map everywhere except at the common zeroes of fi, and anywhere where one of the fi has a pole.
It’s clear that outside of such points, the map f is holomorphic. We can extend it holomorphically across the
problematic points as well. Suppose p ∈ X is a common zero of all the fis. We can pick local coordinates around
p such that fi(z) = zdi(gi(z)), where gi(z) doesn’t vanish at p. Then the map around p looks like the following.

z 7→
[
zd0g0(z) : · · · : zdngn(z)

]
Suppose dk is the minimum of the dis. Then the holomorphic extension across p is given by the following.

z 7→
[
zd0−dkg0(z) : · · · : gk(z) : · · · : zdn−dkgn(z)

]
The function can be similarly extended across the poles. This gives an example of a non-constant holomorphic
function into CPn.

We now have a large class of holomorphic maps into CPn. However, it turns out that every holomorphic function
into CPn is of the form we just described. Furthermore, its expression as ratios of n+ 1 meromorphic functions is
unique up to multiplication by a meromorphic function.

Proposition 5 (Proposition 4.3 from [6]). Let f : X → CPn be a holomorphic map. Then there exist n + 1
meromorphic functions {f0, . . . , fn} such that f(z) = [f0(z) : · · · : fn(z)]. If {g0, . . . , gn} are another collection such
that f(z) = [g0(z) : · · · : gn(z)], then there exists a meromorphic function m such that f = mg.

Proof. The first step in the proof is to actually find the candidates for the meromorphic functions fi. To do that,
we can assume without loss of generality that for some p ∈ X, the x0-coordinate of CPn is non-zero, otherwise
we could rearrange the coordinates. We have n + 1 functions {π0, π1, . . . , πn} from CPn to CP1, i.e. a point
[x0 : x1 : · · · : xn] gets mapped to xi

x0
by the function πi. We compose these functions with f to get fi := πi ◦ f

which is a map from X to CP1. We claim that these functions fi are meromorphic, and are our candidate functions,

i.e. f(z) = [f0(z) : · · · : fn(z)]. The latter claim is easier to verify: since fi is defined f(z)i
f(z)0

, where f(z)i is the ith

coordinate of f , we can multiply out by f(z)0 to get f , and doing that doesn’t affect the projective coordinates.
What we do need to verify is that fis are meromorphic functions. This property can be checked locally, and this

is where we use the fact that maps to CPn locally look like [h0(z) : · · · : hn(z)], where the hi are holomorphic. In

that case fi(z) = hi(z)
h0(z)

, i.e. a ratio of two holomorphic functions, which is clearly meromorphic.
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Suppose we have another collection of functions gi such that [f0(z) : · · · fn(z)] = [g0(z) : · · · : gn(z)] for all z ∈ X.

Locally, we can look at the ratio m(z) = f0(z)
g0(z)

, which will be a meromorphic function. Since [f0(z) : · · · fn(z)] =

[g0(z) : · · · : gn(z)], we must have that for any i, fi(z)
gi(z)

= m(z). This proves uniqueness modulo M(X). �

Since any map φ from X to CPn is given by n+ 1 meromorphic functions, we can define what is called the linear
system of the map φ.

Definition 2.2 (Linear system of a holomorphic map). If φ : X → CPn is given by z 7→ [f0(z) : · · · : fn(z)], then
let D be the divisor such that −D(p) = min((fi)(p)) for all p ∈ X. Let Vφ be the linear span of the meromorphic
functions {f0, . . . , fn}. Then the linear system |φ| defined by the map φ is the following set of divisors.

|φ| = {(g) +D | g ∈ Vφ}

It’s not quite clear at this point that this definition is useful, or even that the linear system |φ| is well defined,
because the definition involves choosing {f0, . . . , fn}. This is where Proposition 5 comes in. Any other choice of
meromorphic functions would differ from {f0, . . . , fn} by multiplication with a meromorphic function, i.e. it would
look something like {mf0, . . . ,mfn}. Let −D = min((fi)) and let −D′ = min(mfi). Then D′ = D − (m). Any
non-negative divisor of the form (g′)+D′ where g′ is in the span of {mf0, . . . ,mfn} will become (m)+(g)+D′−(m),
where g is now in the span of {f0, . . . , fn}. The (m) cancels out the negative (m) giving the same divisor, and
shows that |φ| is well defined.

We also need to understand why this is a useful construction. Paraphrasing [4], a linear system |φ| encodes an
external construction like a map into CPn into something intrinsic to the surface X, i.e. a collection of divisors on
it.

One can also construct linear systems purely in terms of some divisor D. Consider a vector space V of meromor-
phic functions such that for any g ∈ V , (g) + D ≥ 0. In the case of |φ|, the vector space we consider is the vector
space Vφ for some fixed representation of φ as [f0 : · · · : fn]. The question we should ask ourselves now is that when
does an abstract linear system arise as a linear system of some map. The answer to that is when it is base point
free.

Definition 2.3 (Base point free linear systems). A linear system Q is said to be base point free if for all p ∈ X,
there is some divisor E ∈ Q such that E(p) = 0.

For a linear system arising from a map into CPn, it’s not too hard to see that it’s base point free. That’s because
for any point p ∈ X, we can pick {f0, . . . , fn} such that at least one of fi(p) is not equal to 0. The converse is not
too hard to show.

Proposition 6 (Proposition 4.15 from [6]). If Q is a base point free linear system, then Q = |φ| for some holo-
morphic map φ : X → CPn. Furthermore, φ is unique up to a choice of coordinates in CPn.

Proof. Since Q is a linear system, its elements are of the form (g) + D for some g coming from a vector space V .
Let {f0, . . . , fn} be a basis of V . Define a map φ : z 7→ [f0(z) : · · · : fn(z)]. We claim that Q = |φ|. It’s clear that
Q ⊆ |φ|. To show the inclusion the other way, we use the fact that Q is base point free. The linear system Q being
base point free implies that −D = min((fi)). If this weren’t the case, then for some p, −D(p) < (fi)(p) and hence
(g)(p) +D(p) > 0 Since −D = min((fi)), Q must equal |φ|.

Suppose Q was also equal to some other |φ′|. We could then write the generators of Q as (fi) + D as well as
(f ′i) +D′. Here fi is the basis for the vector space V of functions (f) such that (f) +D ≥ 0, and f ′i is the analogous
construction for D′ coming from φ′. We could change coordinates on the φ′ map to get (fi) +D = (f ′i) +D′ for all

i. That means (fi)− (f ′i) is a fixed divisor for all i, which means fi
f ′i

is a fixed meromorphic function, and φ and φ′

define the same map. �

This is the first real result we have managed to obtain from the theory of divisors. We have effectively pa-
rameterized the collection of maps into CPn as a something intrinsic to X, i.e. base point free linear systems on
X.

For any given divisor D, we can look at the linear system |D| which is the set of all non-negative divisors of the
form (g) +D. Then there’s a simple condition D must satisfy for |D| to be base point free.

Proposition 7 (Lemma 3.15 from [6]). The linear system |D| is base point free iff the following equality holds for
all points p ∈ X.

dim(L(D − p)) = dim(L(D))− 1
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Proof. Pick a local coordinate system around p. We can write out the Laurent series for every function in L(D)
as czn + Ω(zn+1), where n = −D(p). Then the space L(D − p) can be thought of as the kernel of the functional
that sends functions in L(D) to the coefficient of the zn, i.e. c. This functional is non-zero since |D| is base point
free, because we can actually find an f such that (f)(p) + D(p) = 0, which means the Laurent series of f will
have a non-zero c. Since the functional is non-zero, its kernel will have codimension 1. Conversely, if L(D − p) has
codimension 1, we know the functional is non-zero, i.e. for some f , (f)(p) +D(p) = 0. �

Given a base point free |D|, we can ask ourselves under what conditions is the associated map into CPn is a nice
map, i.e. an embedding.

Proposition 8 (Proposition 4.20 from [6]). Let D be a divisor such that |D| is base point free. Then the associated
map φD : X → CPn is an embedding iff the following identity holds for all points p and q in X.

dim(L(D − p− q)) = dim(L(D))− 2

Proof. We’ll first show that φD is injective iff for distinct p and q, dim(L(D − p − q)) = dim(L(D)) − 2. Suppose
φD(p) = φD(q). We pick a basis of L(D− p), {f1, . . . , fn} and extend it to a basis of L(D), {f0, . . . , fn}. Then the
map given by z 7→ [f0(z) : · · · : fn(z)] sends p to [1 : 0 : · · · : 0]. This happens because at p, (fi)(p) > −D(p) for i > 0,
but (f0)(p) = −D(p). Since φD(p) = φD(q), the image of q must also be [1 : 0 : · · · : 0]. The latter equality implies
that (fi)(q) > (f0)(q) for i > 0. That means the fi for i > 0 generate L(D−q), and L(D−q) = L(D−p). Conversely,
if L(D− p) = L(D− q), then φD(p) = φD(q). This means every function f such that (f)(p) > −D(p) also satisfies
(f)(q) > −D(q), which in particular means L(D−p) ⊆ L(D−p−q), which in turn implies L(D−p−q) = L(D−p).
Conversely, if L(D − p) = L(D − p − q), then since L(D − p − q) is codimension 1, it equals L(D − q), which by
transitivity, equals L(D − p). We have thus shown that φD(p) = φD(q) iff L(D − p) = L(D − p − q). If we take
the negation of these statements, we see that φD(p) 6= φD(q) iff L(D − p) 6= L(D − p − q). This happens only if
dim(L(D − p− q)) = dim(L(D))− 2, which proves the injectivity result.

To check whether an injective map from a compact Riemann surface is an embedding, it suffices to check whether
the map is an immersion, i.e. the map on tangent spaces is an injection. To check this at any point p ∈ X, we
can assume without loss of generality that φD(p) = [1 : 0 : · · · : 0] via some change of coordinates on CPn. The

coordinates on the image are given by fi(z)
f0(z)

. We need to verify at least one of these coordinate functions has

non-zero derivative at p, which will only happen if fi(p)
f0(p)

has a simple zero at p. In terms of divisors, that translates

to (fi)(p) = (f0)(p) + 1. Notice that L(D − p) is generated by {f1, . . . , fn}. If some (fi) was equal to (f0) + 1 · p,
it wouldn’t be in L(D − 2p), i.e. L(D − 2p) would not equal L(D − p). Conversely, if L(D − 2p) 6= L(D − p), we

could find an fi that’s in L(D− p) but not in L(D− 2p). Then fi
f0

would be simple zero. We have thus shown that

the condition for the map φD to be an immersion is that for all points p, we must haveL(D − 2p) 6= L(D − p), i.e.
dim(L(D − 2p)) = dim(L(D))− 2.

Thus for a map to be both injective and an immersion, we must have for all points p and q in X, dim(L(D −
p− q)) = dim(L(D))− 2. �

A divisor D for which dim(L(D − p− q)) = dim(L(D))− 2 for all p and q is called a very ample divisor, and if
some positive multiple of D is very ample, D is called ample. A very ample divisor corresponds to an embedding
of the surface in some CPn, which means in most cases it suffices to find a very ample divisor if one is trying to
embed a Riemann surface into CPn. Checking whether a divisor is very ample can be often done easily, via the
Riemann-Roch theorem.

Example 2.2 (Very ample divisors). Let X be a compact Riemann surface of genus g and let D be a divisor of
degree greater than or equal to 2g+ 1. It then turns out that D is a very ample divisor. Plug in the divisors D and
D − p− q into the Riemann-Roch formula to get the following equations.

dim(L(D))− dim(L(K −D)) = deg(D)− g + 1(1)

dim(L(D − p− q))− dim(L(K −D + p+ q)) = deg(D − p− q)− g + 1(2)

If we subtract (2) from (1), we get the following.

dim(L(D))− dim(L(D − p− q)) = 2− (dim(L(K −D + p+ q))− dim(L(K −D)))

To proceed from here, we need to figure out the degree of the canonical divisor K. The degree of the canonical
divisor on a surface of genus g turns out to be 2g − 2. We won’t prove it here, but it’s an easy consequence of the
Riemann-Hurwitz formula. In that case, the divisor K−D+p+ q has degree −1, and the divisor K−D has degree
−3. By Lemma 2, both the dimension terms on the right hand side become 0, giving us the exact condition for D
to be a very ample divisor.
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3. Line bundles

So far, we have seen two kinds of functions on Riemann surfaces: the first kind are the holomorphic functions,
which output an element of C for each point p in the Riemann surface, and the second kind are the holomorphic
1-forms, which output an element which locally looks like a multiple of dz, for some dz. It’s not quite clear what
sort of space the latter output lives in. What we do know is that the outputs of both of these kind of functions can
be treated as elements of a vector space, i.e. they can be added and multiplied by a scalar globally. The notion of
a holomorphic line bundle is a formalization of this idea, i.e. a collection of maps from a Riemann surface whose
outputs form a 1-dimensional vector space. The line bundle is a space E with a map to the Riemann surface X,
and maps from X to V satisfying certain conditions are elements of a vector space. Here’s a more formal definition.

Definition 3.1 (Holomorphic line bundle). A holomorphic line bundle (E, π) over X is a topological space E along
with a map π : E → X which satisfies the following conditions.

(i) For any point x ∈ X, there exists an open set U (called the locally trivial neighbourhood) around x such that
π−1(U) is isomorphic to U×C via a map α (called the local trivialization) in a manner that makes the diagram
in Figure 1 commute.

π−1(U) U × C

U

π

α

π1

Figure 1. The local trivialization α commutes with the projections π and π1.

(ii) For any two local trivializations α and β from π−1(U) to U ×C, the map α ◦ β−1 is (id, C(x)), where C(x) is
a holomorphic map from U to GL(1,C). This map is called the transition map from (U, β) to (U,α).

Definition 3.2 (Sections of a line bundle). If (E, π) is a holomorphic line bundle on X, a holomorphic section is
a map s from X to E such that π ◦ s = id, and in any locally trivial neighbourhood U , with local trivialization α,
π2 ◦ α ◦ s is a holomorphic map from U to C. A meromorphic (or rational) section of E is a section defined on all
but finitely many points of X such that it locally looks like a meromorphic function.

We have already seen two examples of holomorphic line bundles and sections of them: the first one is X × C,
whose sections are just the regular holomorphic functions, and the second is the cotangent bundle T ∗X, whose
sections are the holomorphic 1-forms.

The next thing one should define now are maps from line bundles.

Definition 3.3 (Line bundle morphisms). If L and K are two line bundles over X, then a line bundle morphism
from L to K is a map f which makes the following diagram commute.

L K

X

πL

f

πK

Furthermore, the map f should be linear on the fibre over every point of X. This map is an isomorphism if there’s
a map g in the opposite direction such that f ◦ g and g ◦ f are identity on each fibre.

Analogous to dual of a vector space, we can also construct the dual of a line bundle L. Abstractly, it’s given by
a line bundle map from L to the trivial line bundle X × C, which mirrors the construction of the dual of a vector
space, which is given by a map from V to the base field k. Concretely, it’s constructed by taking the data of the
transition maps of the line bundle L, and replacing them with their conjugate. It’s an easy exercise to see that
these two constructions really give the same line bundle.

The last construction we need on line bundles is the notion of a tensor product. Abstractly, L ⊗ K is the set of
all bilinear bundle maps from L×K to X ×C. Concretely, it’s constructed by taking the transition maps of L and
K, and tensoring them.

The collection of line bundles over X modulo isomorphism is denoted by the LB(X). The operation of taking a
dual and tensor product factor onto this set in a well defined manner, and they make LB(X) into an abelian group,
with multiplication given by L × K := L ⊗ K, inverse given by L−1 := L∗, and the identity element is the class of
the trivial bundle X × C.
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This is where divisors enter the picture. It turns out that the group LB(X) is isomorphic to the group Pic(X).
To see this, we must first describe a map from Pic(X) to LB(X), and then a map in the other direction.

Suppose D = p · x is a divisor with just one point x in its support. To construct a line bundle from this divisor,
pick a small coordinate chart (U,α) around p, and let V be the open set X \ {x}. Let these be the locally trivial
neighbourhood. The only thing we need to specify is how does a point in the fibre over some point in U ∩V change
as we change from the local trivialization in U to the one in V . That will determined by the integer p. Recall that
U ∩ V is biholomorphic to the open disc minus a point in C. We need a holomorphic function from this set into
GL(1,C) to define the transition map. We’ll define the map to be z 7→ zp. This gives us a line bundle over X.
For divisors of the form

∑
i pi · xi, we define the line bundle associated to these as the

⊗
i Li, where Li is the line

bundle associated to the divisor pi · xi. We only need to check one thing: this descends to a map from Pic(X) to
LB(X), i.e. doing this construction for any principal divisor should give a line bundle isomorphic to X × C. This
will show it’s a well-defined map from Pic(X) to LB(X) and that it’s injective.

Showing that the map is surjective is slightly trickier. The way one does it is the following: start with any rational
section of the line bundle L. The rational section may vanish at a few places, and may have poles somewhere, so
it defines a divisor D. It turns out that is the divisor associated to the line bundle, i.e. if one performs the
construction in the previous paragraph with the divisor D, one gets a line bundle LD which is isomorphic to L. The
thing that needs to be checked here is that the divisor’s class is independent of the choice of the rational function.
We have already seen something like this in the case of the cotangent bundle, where the divisor associated to any
meromorphic 1-form (i.e. rational section of the cotangent bundle) descended to the same element in Pic(X), i.e.
the canonical class. We have thus proved the following result, modulo a lot of details.

Theorem 9. The groups Pic(X) and LB(X) are isomorphic.

This correspondence lets us a conclude a lot of things about line bundles from the corresponding results about
divisors. We first need the following lemma.

Lemma 10. Let D be a divisor, and L the line bundle associated to the divisor. Then the space of holomorphic
sections of L is isomorphic to L(D).

Proof. For clarity’s sake, we’ll prove this when D just has one point in its support, i.e. D = p ·x. Recall the locally
trivial neighbourhoods of L. One of them was a small open set U around x, and the other was V = X \ {x}. Any
section holomorphic on V must be a rational function f on X. To check its actually a holomorphic section, we need
to check its also holomorphic on U . Since the transition function is z 7→ zp, the section looks like zpf in the locally
trivial neighbourhood U . This will be holomorphic if f had a pole of order less than or equal to p at x. But that
means f belongs to L(D). Conversely, any function in L(D) will have a pole of order less than or equal to p at
x will define a holomorphic section of L by the argument above. The same proof works for divisors with multiple
points in the support. �

One consequence of this lemma and the Riemann-Roch theorem is that for any holomorphic line bundle, the
space of its holomorphic sections is finite dimensional.

One can now also talk about the ampleness of line bundles, by talking about the ampleness of their associated
divisors. If a line bundle is very ample, a basis consisting of holomorphic sections will give a map of the base space
X into a projective space CPn. Furthermore, line bundles can be enriched with additional geometric structure, like
connections, which allows us to talk about the curvature of a line bundle. The line bundle is said to be positive if
its curvature form satisfies certain positivity conditions. The Kodaira embedding theorem shows that the notions of
ampleness and positivity are equivalent, thus allowing the use of techniques from the differential geometry to prove
ampleness, and techniques from algebraic geometry to prove positivity results. Chapter 4 of [2] has more details on
the interaction between algebraic and differential geometry arising from the Kodaira embedding theorem.

4. The Abel-Jacobi Map

We have seen that the group Pic(X) classifies line bundles on X up to isomorphism. Consequently, it might be
useful to understand what the group itself looks like. We already have some idea of the structure of the group:
recall that after picking a base point, the group Div(X) factors as Div0(X)⊕ Z. It’s not too hard to see that this
splitting factors onto the group Pic(X). We end up with a similar splitting after picking a basepoint x0 ∈ X.

Pic(X) = Pic0(X)⊕ Z

Let’s focus our attention to Pic0(X). To understand this group, we need to be able to determine when a degree
0 divisor is principal. This is where the Abel-Jacobi map comes in. We will construct a complex torus J(X), and
a map from Div0(X) to J(X) whose kernel is exactly the group of principal divisors. We will also show that the
map is surjective, which will prove that Pic0(X) is isomorphic as a group to J(X).
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4.1. Construction of the Jacobian. Let Ω1(X)∗ be the dual of the space of holomorphic 1-forms Ω1(X). We
know what some elements of Ω1(X)∗ look like: they’re given by integrating the given holomorphic 1-form along
some fixed curve γ. Suppose γ is closed curve and γ′ another closed curve which differs from γ by a boundary, i.e.
γ = γ′ + ∂B, for some singular 2-chain B. We can integrate any holomorphic 1-form ω along γ.∫

γ

ω =

∫
γ′
ω +

∫
∂B

ω

=

∫
γ′
ω +

∫
B

dω

Since ω is a holomorphic 1-form, it locally looks like f(z)dz for some holomorphic f . Its exterior derivative will
be ∂zfdz ∧ dz + ∂zfdz ∧ dz = 02. What this means is that the second term in the right hand side of the above
expression vanishes. We thus get the following identity for homologous chains γ and γ′ for any holomorphic 1-form
ω. ∫

γ

ω =

∫
γ′
ω

We get a well defined map from H1(X;Z) to Ω1(X)∗, given by the following expression.

[γ] 7→
∫
γ

The image of this map forms a subgroup of Ω1(X)∗, which we’ll call periods, and denote by Λ. The Jacobian J(X)
is the space Ω1(X)∗/Λ.

We can explicitly see what the space J(X) looks like. By Poincaré duality, H1(X;Z) is isomorphic to H1(X;Z).
We also know that H1(X;Z) forms a lattice in H1(X;R). A result in Chapter 8 of [1] says that H1(X;R) is
isomorphic (as an R-vector space) to Ω1(X), which, after picking a basis, is isomorphic to Ω1(X)∗. That means Λ
forms a lattice inside Ω1(X)∗, and J(X) is a complex g-dimensional torus.

4.2. Construction of the Abel-Jacobi map. To construct the Abel-Jacobi map, we’ll need to pick a basepoint,
say p; though we’ll show later it’s not really required. We first define the Abel-Jacobi map A from X to J(X).

A(x) =

[∫
γ(p,x)

]

Here, γ(p, x) is a path from p to x, and
[∫
γ(p,x)

]
denotes the equivalence class of

∫
γ(p,x)

in J(X). This is a well

defined map, since any path γ′(p, x) will differ from γ(p, x) by a closed loop, which will go to 0 in J(X). We can
extend this map by linearity to Div(X).

A

(∑
i

ci · xi

)
=
∑
i

([
ci

∫
γ(p,xi)

])
If we restrict the map A to divisors of degree 0, it turns out to be independent of the choice of base point p.

Proposition 11. Let A be the Abel-Jacobi map with respect to the basepoint p, and A′ be the Abel-Jacobi map with
respect to the basepoint p′. If D is a divisor of degree 0, then A(D) = A′(D).

Proof. Every divisor of degree 0 can be written as a sum of divisors of the form a− b, where a and b are points on
X. It suffices to show A(a− b) = A′(a− b). Let γ1 be a path from p to a, and γ2 be a path from p to b. Let γ′1 and
γ′2 be the corresponding paths from p′. If we compute A(a− b)−A′(a− b), we get the following integral.

A(a− b)−A′(a− b) =

[(∫
γ1

−
∫
γ2

)
−

(∫
γ′1

−
∫
γ′2

)]

=

[∫
γ1−γ′1+γ′2−γ2

]
From Figure 2 it’s clear that the path γ1 − γ′1 + γ′2 − γ2 is a closed path, which means that integral is 0 in J(X),
and A(a− b) = A′(a− b). �

2 We have shown here that holomorphic 1-forms are closed. A similar proof also works for anti-holomorphic 1-forms.
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Figure 2. The Abel-Jacobi map is independent of base point for the divisor a− b

What we have gotten so far is an explicit description of the Abel-Jacobi map from Div0(X) to J(X). The
next couple of things we need to show about this map are that its kernel is exactly the group of principal divisors
PDiv(X), and that the map is surjective. The former result is called Abel’s theorem, and the latter is called the
Jacobi Inversion problem. We will prove both these results in the next two sections.

4.3. Abel’s Theorem. We shall replicate the proof of Abel’s theorem presented in Chapter VIII of [6]. We first
prove one direction of the result, the direction which states that the image of a principal divisor under the Abel-
Jacobi map is 0. To prove this, we’ll need the notion of the trace of meromorphic 1-form. The operation of taking
a trace is in some sense dual to pulling back a 1-form along a map f . Given a non-constant holomorphic map f
between compact Riemann surfaces X and Y , the trace of a meromorphic 1-form ω on X is an associated 1-form
Tr(ω) on Y , which acts like the pushforward of ω along the map f . We will make it clearer in what sense it is a
pushforward, but before that, we’ll define the trace.

Since f is a non-constant holomorphic map from X to Y , it must be a ramified cover of some degree d, because
it’s surjective (its image is compact and open by the Open Mapping theorem), and is singular at only finitely many
points. At an unramified point q in Y , the map f must be a local isomorphism, i.e. there exists an open set V
around q such that f−1(V ) is a disjoint union of d open sets {U1, . . . , Ud} in X, all of which are biholomorphic to
V . Let φi be the biholomorphism from V to Ui. We define Tr(ω) at these points in the following manner.

Tr(ω)(q) =
∑

p∈f−1(q)

φ∗i (ω)(p)

It’s clear that in the neighbourhood V , Tr(ω) is a meromorphic 1-form, since it’s locally a sum of meromorphic
1-forms. The only difficulty lies in extending this 1-form on the points q ∈ Y , where f is ramified, because it won’t
be a local biholomorphism at such a point, and there will be no map going in the other direction. We can still
define the trace though. First, assume that q has just one preimage p, and pick local coordinates z around p and
around q such that the map f sends z to zd. Suppose the form ω locally looks like h(z)dz. Then we define its trace
by the following formula.

Tr(ω) =

d−1∑
i=0

h
(
ζiz
)

d (ζiz)
d−1 dz(3)

This formula seems to come out of nowhere, but we have already seen this before. For a non-ramified point p, the
value of Tr(ω) at p was given by summing up φ∗i (ω) over all its preimages. This is also what is happening here: for
any non-zero z, the map is unramified, and the above formula is doing precisely what it should, i.e. summing the

pullback over all preimages. The symbol ζ denotes a dth root of 1, i.e. exp
(

2π
√
−1
d

)
. The expression given by (3)

defines a meromorphic 1-form in the neighbourhood of 0. If we write out the Laurent series of h(z)dz, which we’ll
denote by

∑
n cnz

ndz and plug that into the above formula and simplify, we get the Laurent series for Tr(ω).

Tr(ω) =
∑
n

cnd−1z
n−1dz(4)

For an arbitrary point q with preimages {q1, . . . , qk}, where the ramification degree is di, one does the above
construction for each preimage, and adds up all the traces. This defines the trace of a meromorphic 1-form. From
the formula of the trace, it’s clear that the trace of a holomorphic 1-form is holomorphic.

Given a path γ ∈ Y , we can pull it back to d paths in X by using the path lifting properties of covers, as long as
the path doesn’t go through any ramification points. Even if it does, we can just delete those points, lift the path
up, and take the closure, which will give us d paths. We denote the pullback of a path γ defined in this manner by
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f∗(γ) = γ1 + · · · + γd, where γi’s are the paths that γ lifts to. We can define the pullback of any singular 1-chain
in this manner. This lets us state the following lemma.

Lemma 12 (Integration of trace). Let f : X → Y be a non-constant holomorphic function, ω a holomorphic 1-form
on X, and γ a chain on Y . We then have the following equation.∫

f∗γ

ω =

∫
γ

Tr(ω)

Proof sketch. Since the ramification points are finite, and have measure 0, they do not affect this integral. We
might as well assume that the paths don’t go through the ramification points. In that case, the left hand side is
just an integration along the d lifts of γ. If one recalls the definition of trace of a 1-form, it’s really the sum of the
1-forms at the preimage points, which means the right hand side is also the sum of the integral of ω along the lifted
paths f∗γ. �

We can now prove one of the directions of Abel’s theorem.

Proposition 13. Let (f) be a principal divisor on X. Then the Abel-Jacobi map sends (f) to 0 in J(X).

Proof. The divisor (f) comes from a holomorphic map f : X → CP1. Let {z1, . . . , zd} be the preimages of 0 counted
with multiplicities, and let {p1, . . . , pd} be the preimages of ∞, counted with multiplicities. The divisor (f) can be
written in the following manner.

(f) =

d∑
i=1

(zi − pi)

Pick a base point x0, and paths αi and βi from x0 to zi and pi respectively. Then the action of the Abel-Jacobi
map on (f) is given by the following expression.

A((f)) =

d∑
i=1

[∫
αi

−
∫
βi

]
(5)

Pick a path γ in CP1 from 0 to ∞ that doesn’t pass through any ramification points. This path will pullback to d
paths {γ1, . . . , γd} in X such that γi goes from zi to pi. Then for each i, αi + γi − βi is a closed loop. Using this
fact along with (5) gives us the following.

A((f)) = −
d∑
i=1

[∫
γi

]
One of the preimages of A((f)) in Ω1(X)∗ is −

∑d
i=1

∫
γi

. We will show that this functional is evaluates to 0 on every

holomorphic 1-form ω, which will show the image of the functional in J(X) is 0, and consequently, A((f)) = 0.
If we evaluate the functional on any holomorphic 1-form ω, we get the following.

−
d∑
i=1

∫
γi

ω = −
∫
f∗γ

ω

The right hand side becomes −
∫
γ

Tr(ω) by Lemma 12. Furthermore, since ω was holomorphic, so is its trace. But

there are no non-zero holomorphic 1-forms on CP1 since its genus is 0. This proves the result. �

Proving the other part of Abel’s theorem is slightly more involved. We’ll need a few lemmas before we can
prove the result. First, consider the surface X as the quotient of a 4g-sided polygon P, with the sides given by⋃g
i=1{ai, bi, a′i, b′i}, ai is identified with a′i with orientation reversed, and bi is identified with b′i with orientation

reversed. Note that the homology H1(X;Z) is generated by the loops {ai} and {bi}. For any 1-form σ, its integral
around the loop ai is denoted by Ai(σ), and its integral around the loop bi is denoted by Bi(σ).

Pick a point x0 in the interior of the polygon P, and a smooth form σ. We can define the following function on
P.

fσ(x) =

∫
γ(x0,x)

σ

Here, γ(a, b) is a path from a to b in the polygon P. Since the polygon is simply connected, any two paths are
homotopic, and the function is well defined. Furthermore, if σ is a holomorphic 1-form, then fσ is a holomorphic
function. We can now state our first few lemmas.



12 SAYANTAN KHAN

Lemma 14. Let σ and τ be closed forms on X. Then we have the following equation.∫
∂P

fστ =

g∑
i=1

Ai(σ)Bi(τ)−Ai(τ)Bi(σ)

Proof. We can explicitly write down what the given integral will be.∫
∂P

fστ =

∫
∑g

i=1 ai+bi−a′i−b′i
fστ

=

g∑
i=1

(∫
p∈ai

(fσ(p)− fσ(p′))τ +

∫
q∈bi

(fσ(q)− fσ(q′))τ

)
In the above equation, we’re using the fact that ai and a′i get identified, and bi and b′i get identified, and if p and
p′ are corresponding points on ai and a′i, the value of τ at both these points will be the same.

We now need to figure out what fσ(p)− fσ(p′) is. That is given by the following integral.

fσ(p)− fσ(p′) =

∫
γ(x0,p)

σ −
∫
γ(x0,p′)

σ

=

∫
γ(x0,p)+γ(p,p′)−γ(x0,p′)

σ −
∫
γ(p,p′)

σ

The first term in the above expression is 0, since the associated path is contractible. The second path γ(p, p′) is
homotopic to the path bi on P, so we end up getting −Bi(σ). Similarly, the expression fσ(q) − fσ(q′) becomes
Ai(σ), which gives us the result we wanted. �

Lemma 15. If ω is a non-zero holomorphic 1-form on X, we have the following inequality.

Im

g∑
i=1

Ai(ω)Bi(ω) < 0

Proof. We use Lemma 14 with the forms ω and ω. We get the following.∫
∂P

fωω =

g∑
i=1

Ai(ω)Bi(ω)−Ai(ω)Bi(ω)

It’s not too hard to check that Ai(ω) = Ai(ω) and Bi(ω) = Bi(ω). Substituting these relations back into the above
equation, we get the following. ∫

∂P
fωω = 2

√
−1 · Im(Ai(ω)Bi(ω))

We can compute the left hand side term using Stoke’s theorem.∫
∂P

fωω =

∫
P
d(fωω)

=

∫
P
dfω ∧ ω + fωdω

=

∫
P
ω ∧ ω + 0

The term dfω becomes ω simply as a consequence of the fundamental theorem of calculus, and ω is a closed form
because anti-holomorphic 1-forms are closed (just like we showed holomorphic 1-forms are closed).

Locally, ω looks like f(z)dz, so ω∧ω will look like |f(z)|2dz∧dz. Changing coordinates to dx∧dy, this becomes
−2
√
−1|f |2dx ∧ dy. The integral of this will be purely imaginary, and will have negative imaginary part. This

proves that
∫
P fωω

2i < 0, which is what we wanted to show. �

Lemma 16. If ω is a holomorphic 1-form such that Ai(ω) = 0 for all i, then ω = 0. Then same holds if the Ai
are replaced by Bi.

Proof. This follows obviously from Lemma 15. �

Since the space of holomorphic 1-forms is g-dimensional, we can encapsulate the data of the values of Ai(ω) and
Bi(ω) in the form of two g × g matrices, which we’ll denote by A and B. We start by picking a basis {ω1, . . . , ωg}
of Ω1(X). The ijth entry of A is Ai(ωj), and similarly, the ijth entry of B is Bi(ωj). These matrices are called the
period matrices with respect the given basis of Ω1(X) and H1(X;Z). They have a few useful properties.
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Lemma 17. The matrices A and B are non-singular.

Proof. Let ω be a holomorphic 1-form in the kernel of A. That means Ai(ω) = 0 for all i. But by Lemma 16, ω
must be 0, hence A must be non-singular. The same proof works for B. �

Lemma 18. The matrices A and B satisfy the following relation.

A>B = B>A

Proof. Apply Lemma 14 to the form ωi and ωj . The left hand side becomes the following.∫
∂P

fωiωj =

∫
P
d(fωiωj)

=

∫
P
ωi ∧ ωj + fωi

dωj

= 0 + 0

The first term vanishes because ωi locally looks like fi(z)dz and ωj looks like fj(z)dz, and their wedge product is 0.
The second term vanishes because holomorphic 1-forms are closed. We can rearrange the right hand side of Lemma
14 to get the following equality.

g∑
n=1

An(ωi)Bn(ωj) =

g∑
n=1

Bn(ωi)An(ωj)

The left hand side is the ijth entry of A>B and the right hand side is the ijth entry of B>A. This proves the
lemma. �

We just need to prove one last lemma before we can prove the other direction of Abel’s theorem.

Lemma 19. Let D be a degree 0 divisor on X such that A(D) equals 0 in J(X). Then there exists a meromorphic
1-form ω satisfying the following conditions.

(i) ω has simple poles on the support of D and is holomorphic outside the support of D.
(ii) Resp(ω) = D(p) for all points p ∈ X.

(iii) Ai(ω) and Bi(ω) are integral multiples of 2π
√
−1 for all i.

Proof. By Proposition 1.15 of Chapter VII in [6], there exists a meromorphic 1-form τ that satisfies the first two
conditions. Then τ − ω, where ω is a holomorphic 1-form also satisfies the first two conditions. If {ω1, . . . , ωg} is a
basis of holomorphic forms, then the problem boils down to finding coefficients {c1, . . . , cg} such that τ −

∑g
i=1 ciωi

satisfies the third condition.
We can assume without loss of generality that the curves ai and bi don’t pass through the poles of τ , otherwise

we could always shift them to avoid the pole. Define the numbers ρi in the following manner.

ρi =
1

2π
√
−1

∫
∂P

fωi
τ

=
∑
p∈X

Resp(fωi
τ)

The second equality follows from the residue theorem. Since fωi is holomorphic, and the residue of τ at p is D(p),
we get the following.

ρi =
∑
p∈X

fωi
(p) ·D(p)

=
∑
p∈X

D(p)

∫ p

x0

ωk

Recall that x0 was the basepoint we picked in X. Notice that this is precisely the functional A(D) acting upon ωi.
But recall that A(D) was 0 in J(X). That means the functional

∑
p∈X D(p)

∫ p
x0

is of the form
∫
γ
, for some closed

loop γ. We can write γ in terms of the generators of H1(X;Z) as the following.

[γ] =

g∑
i=1

mi[ai]− ni[bi]
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Applying this functional to ωk, we see that it evaluates to the following.

ρk =

g∑
i=1

Ai(ωk)−Bi(ωk)(6)

But Lemma 14 gives us that ρk also equals the following expression.

ρk =
1

2π
√
−1

g∑
i=1

Bi(τ)Ai(ωk)−Ai(τ)Bi(ωk)(7)

If we equate (6) and (7), we get the following expression.∑
i=1

(Bi(τ)− 2miπ
√
−1)Ai(ωk) =

g∑
i=1

(Ai(τ)− 2niπ
√
−1)Bi(ωk)

The above equation is really an explicit way of writing the following equation.

A>b = B>a

Here, b is the vector whose kth coordinate is Bk(τ)− 2miπ
√
−1, and a is the corresponding vector for Ak.

Consider the following maps.

α : Cg → C2g

α : v 7→
(

Av
Bv

)
β : C2g → Cg

β :

(
v
w

)
7→ B>v −A>w

By Lemma 18, β ◦ α = 0, and because A and B are full rank, we must have ker(β) = Image(α). Notice that the

vector

(
a
b

)
is in ker(β), which means there’s a c ∈ Cg such that a = Ac and b = Bc. This vector c will tell us

how to modify τ to get the form we want. Let ω be the following 1-form.

ω = τ −
g∑
i=1

ciωi

If we compute Ai(ω), and Bi(ω), we get the following.

Ai(ω) = 2niπ
√
−1

Bi(ω) = 2miπ
√
−1

This proves the lemma. �

We can now prove Abel’s theorem.

Theorem 20 (Abel’s Theorem). A degree 0 divisor D is principal iff A(D) goes to 0 in J(X).

Proof. If D is principal, A(D) = 0 by Proposition 13. Now suppose A(D) = 0. By Lemma 19, we can find a
meromorphic 1-form that satisfies the three conditions in Lemma 19. Define a function f in the following manner.

f(x) = exp

(∫ x

x0

ω

)
Since the integral of ω over any closed loop is an integral multiple of 2π

√
−1, the above function is well defined.

Furthermore, the function f is holomorphic wherever ω is. In particular, that means it has only finitely many
singularities. We need to show that the singularities are all poles, and D = (f).

Pick a coordinate neighbourhood around a pole p of ω. Since ω has a simple pole of order D(p) there, locally it
looks like the following.

ω =

(
D(p)

z
+ g(z)

)
dz
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That means the integral
∫ z
x0

locally looks like the following.∫ z

x0

ω = D(p) ln(z) + h(z)

And if we take the exponential, we get the following.

f(z) = zD(p)eh(z)

This is clearly meromorphic, and the order of f at p is D(p). This shows (f) = D and proves the result. �

Abel’s theorem implies that the Abel-Jacobi map factors through the group of principal divisors, and induces
the following injection.

A : Pic0(X) ↪→ J(X)

4.4. Jacobi Inversion. Our next goal is to show the map from Pic0(X) to J(X) is also surjective. That’s equivalent
to showing that the Abel-Jacobi map A into J(X) is surjective. To show that the map A is surjective, it will suffice
to show that its image in J(X) contains an open subset of J(X). Since J(X) is a connected topological group, the
result will follow from the following easy theorem (which we won’t prove).

Theorem 21. Let G be a connected topological group, and H a subgroup that contains an open subset of G. Then
H = G.

Pick a base point x0 in X. Consider the following map I from Xg to J(X), where g is the genus of X.

I((x1, . . . , xg)) = A

(
g∑
i=1

xi − x0

)
To show that the image of A contains an open set, it suffices to show that the image of I contains an open set.
Because both Xg and J(X) g-dimensional complex varieties, one approach would be to show that there is some
point (x1, . . . , xg) ∈ Xg where the derivative of I is non-singular. The inverse function theorem will then tell us
that the image contains an open set.

Proposition 22. There exists a point (x1, . . . , xg) ∈ Xg such that the derivative of I at that point is an invertible
g × g matrix.

Our proof for Proposition 22 is based on the proof of Theorem 5.2 in [5].

Proof. Pick points {x1, . . . , xg} ∈ X, and local coordinates {z1, . . . , zg} around them. We’ll specify later in the
proof what these points need to be. This gives a coordinate chart around the point (x1, . . . , xg) ∈ Xg given by
(z1, . . . , zg). Pick paths {γ1, . . . , γg} going from x0 to xi respectively. We also need pick a basis of Ω1(X), say
{ω1, . . . , ωg}, which gives us coordinates on J(X) from the coefficients of the dual basis {ω∗1 , . . . , ω∗g}. In terms of
these coefficients, the map I looks like the following.

I((x1, . . . , xg)) =


∑g
i=1

∫
γi
ω1∑g

i=1

∫
γi
ω2

...∑g
i=1

∫
γi
ωg


We can now compute the derivative matrix of this map. If we denote the jth row of the output of I by Ij , then

∂Ij
∂xk

is given by the following expression.

∂Ij
∂xk

=
ωj
dzk

The above expression needs an explanation. The expression for Ij is given by
∑g
i=1

∫
γi
ωj , and if we differentiate

this with respect to the xk coordinate, all the terms except the kth term will vanish, since they don’t depend on
xk. The derivative of the kth term with respect to the coordinate xk can be computed by writing ωj locally in the
zk coordinates as ωj = hjkdzk. In that case, the expression for the derivative becomes the following.

∂Ij
∂xk

=
∂

∂xk

∫ xk

x0

hjkdzk
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The fundamental theorem of calculus tells us that the above expression equals hjk. We can denote it succinctly by
ωj

dzk
. Thus the derivative matrix at (x1, . . . , xg) looks like the following.

DI((x1, . . . , xg)) =


ω1(x1)
dz1

· · · ω1(xg)
dzg

...
. . .

...
ωg(x1)
dz1

· · · ωg(xg)
dzg


We need to show that this matrix is non-singular for some point (x1, . . . , xg) ∈ Xg.

Pick a point x1 where the form ω1 does not vanish. And then modify the basis of Ω1(X) in the following manner:
replace ωi for i ≥ 2 with the ω′i, where ω′i is given by the following expression.

ω′i = ωi −
ωi(x1)

ω1(x1)
ω1

This is well defined, since ω1(x) is not 0. Furthermore, we can locally divide forms, since they’re sections of a line
bundle. With respect to the new basis of Ω1(X), the expression for DI at any point with the first coordinate x1
becomes the following.

DI((x1, . . . , xg)) =


ω1(x1)
dz1

ω1(x1)
dz2

· · · ω1(xg)
dzg

0
ω′2(x2)
dz2

· · · ω′2(xg)
dzg

...
...

. . .
...

0
ω′g(x2)

dz2
· · · ω′g(xg)

dzg


We can repeat this process again, by finding a point x2 ∈ X where ω′2 does not vanish, and modifying the basis
elements ω′i for i ≥ 3. If we do this g times, we find g points {x1, . . . , xg} in X such that the derivative of I at
(x1, . . . , xg) is given by an upper triangular matrix with non-zero coefficients on the diagonal. This shows that at
that point, the derivative matrix is invertible. The proves the result. �

We have shown that the Abel-Jacobi map is surjective, and the induced map from Pic0(X) to J(X) is an
isomorphism. We have thus managed to answer the question we asked ourselves at the beginning of the section, i.e.
what does the group Pic(X) look like. The answer is that it looks like J(X)⊕Z, i.e. the product of a torus and Z.

Our construction of the Jacobian, as well as the results we proved about it, i.e. the Jacobian is isomorphic to
Pic0(X), relied heavily on tools available only over C like integration of differential forms and singular homology.
Over an arbitrary field, the Jacobian of a curve X is an abelian variety (a variety which is also an algebraic group)
J(X) such that X ↪→ J(X), and the extending the map linearly to divisors gives an isomorphism from Pic0(X)
and J(X), along with a couple of other conditions. This works over any algebraically closed field, but it comes at
a cost of being harder to describe, or do computations with. Chapter A.8 in [3] has more details on the properties
and constructions of the Jacobian over arbitrary fields.
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